智能微电网规划阶段车辆到建筑物充电器和储能系统的成本效益确定方法

IF 15 1区 工程技术 Q1 ENERGY & FUELS
Ziliang Wei, Yang Geng, Hao Tang, Yang Zhao, Borong Lin
{"title":"智能微电网规划阶段车辆到建筑物充电器和储能系统的成本效益确定方法","authors":"Ziliang Wei,&nbsp;Yang Geng,&nbsp;Hao Tang,&nbsp;Yang Zhao,&nbsp;Borong Lin","doi":"10.1016/j.etran.2024.100343","DOIUrl":null,"url":null,"abstract":"<div><p>Demand side management (DSM) is a great challenge for new power systems based on renewable energy. Vehicle-to-Building (V2B) and Energy Storage Systems (ESS) are two important and effective tools. However, existing studies lack the sizing method of bidirectional chargers and ESSs. This study has proposed a cost-effective sizing method of V2B chargers and ESSs during the planning stage. By developing a linear model that clusters electric vehicle users based on mobility patterns and employing mixed integer linear programming for day-ahead control strategies, the method minimizes the dynamic payback period of initial investments. Tested in an office park featuring photovoltaic generation, the optimal configuration of 50% V2B chargers and 1 ESS significantly reduces cumulative peak-hour load and peak power by 51.3% and 42.4%, respectively. The price and rated power of EV chargers on the optimal sizing result are also investigated, providing guidance for the design and operation of micro-grid systems. Furthermore, the study suggests further exploration into actual data acquisition, real-time control strategy enhancement, and comprehensive user behavior for broader application.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"21 ","pages":"Article 100343"},"PeriodicalIF":15.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-effective sizing method of Vehicle-to-Building chargers and energy storage systems during the planning stage of smart micro-grid\",\"authors\":\"Ziliang Wei,&nbsp;Yang Geng,&nbsp;Hao Tang,&nbsp;Yang Zhao,&nbsp;Borong Lin\",\"doi\":\"10.1016/j.etran.2024.100343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Demand side management (DSM) is a great challenge for new power systems based on renewable energy. Vehicle-to-Building (V2B) and Energy Storage Systems (ESS) are two important and effective tools. However, existing studies lack the sizing method of bidirectional chargers and ESSs. This study has proposed a cost-effective sizing method of V2B chargers and ESSs during the planning stage. By developing a linear model that clusters electric vehicle users based on mobility patterns and employing mixed integer linear programming for day-ahead control strategies, the method minimizes the dynamic payback period of initial investments. Tested in an office park featuring photovoltaic generation, the optimal configuration of 50% V2B chargers and 1 ESS significantly reduces cumulative peak-hour load and peak power by 51.3% and 42.4%, respectively. The price and rated power of EV chargers on the optimal sizing result are also investigated, providing guidance for the design and operation of micro-grid systems. Furthermore, the study suggests further exploration into actual data acquisition, real-time control strategy enhancement, and comprehensive user behavior for broader application.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"21 \",\"pages\":\"Article 100343\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259011682400033X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259011682400033X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

需求侧管理(DSM)是基于可再生能源的新型电力系统面临的巨大挑战。车对楼(V2B)和储能系统(ESS)是两个重要而有效的工具。然而,现有研究缺乏双向充电器和 ESS 的选型方法。本研究提出了一种在规划阶段对 V2B 充电器和 ESS 进行成本效益评估的方法。通过建立一个线性模型,根据移动模式对电动汽车用户进行聚类,并采用混合整数线性规划来制定日前控制策略,该方法最大限度地缩短了初始投资的动态投资回收期。在一个采用光伏发电的办公园区内进行的测试显示,50% V2B 充电器和 1 个 ESS 的最佳配置可将累计高峰小时负荷和峰值功率分别显著降低 51.3% 和 42.4%。研究还探讨了电动汽车充电器的价格和额定功率对最佳规模结果的影响,为微电网系统的设计和运行提供了指导。此外,该研究还建议进一步探索实际数据采集、实时控制策略增强和综合用户行为等方面,以实现更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-effective sizing method of Vehicle-to-Building chargers and energy storage systems during the planning stage of smart micro-grid

Demand side management (DSM) is a great challenge for new power systems based on renewable energy. Vehicle-to-Building (V2B) and Energy Storage Systems (ESS) are two important and effective tools. However, existing studies lack the sizing method of bidirectional chargers and ESSs. This study has proposed a cost-effective sizing method of V2B chargers and ESSs during the planning stage. By developing a linear model that clusters electric vehicle users based on mobility patterns and employing mixed integer linear programming for day-ahead control strategies, the method minimizes the dynamic payback period of initial investments. Tested in an office park featuring photovoltaic generation, the optimal configuration of 50% V2B chargers and 1 ESS significantly reduces cumulative peak-hour load and peak power by 51.3% and 42.4%, respectively. The price and rated power of EV chargers on the optimal sizing result are also investigated, providing guidance for the design and operation of micro-grid systems. Furthermore, the study suggests further exploration into actual data acquisition, real-time control strategy enhancement, and comprehensive user behavior for broader application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信