{"title":"孔隙尺度洞察强湿和弱湿天然裂缝中的相对渗透性:晶格玻尔兹曼法二维模拟研究","authors":"F.F. Munarin , P. Gouze , F. Nepomuceno Filho","doi":"10.1016/j.advwatres.2024.104740","DOIUrl":null,"url":null,"abstract":"<div><p>The simplified view of two-phase flow, such as oil and gas, in a fracture is often assumed to occur in a stratified behavior. However, recent studies and production practices have revealed that two-phase flow in fractures exhibits diverse flow patterns. This paper investigates the control of the fracture aperture, fluids viscosity, and wettability on two-phase flow in a 2D cross section of a 3D Berea fracture. Lattice Boltzmann Method (LBM) simulations are used to model the impact of these properties on relative permeability curves. Notably, in strongly wet fractures, two distinct permeability regimes emerge. High aperture values exhibit behavior resembling parallel planes, while low aperture values lead to a linear decrease in permeability due to fluid interactions between fracture surfaces. Conversely, anomalous behavior of the relative permeability curves is identified in weakly wet fractures within specific aperture ranges. This behavior is associated with the occurrence of specific flow patterns within the fracture. Results also emphasize that changes in viscosity ratio do not affect the presence or the saturation range of the anomalous behavior but do influence its intensity for each fluid. Comparisons with Poiseuille profile equations reveal the limited impact of the fracture roughness. These findings enhance our understanding of the interactions between aperture, viscosity, and wettability and how they control the shape of the relative permeability curves. These curves are pivotal parameters for the continuum scale modeling (reservoir models) in oil and gas application, for instance.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104740"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-scale insights into relative permeability in strongly and weakly wet natural fractures: A Lattice Boltzmann Method 2D simulation study\",\"authors\":\"F.F. Munarin , P. Gouze , F. Nepomuceno Filho\",\"doi\":\"10.1016/j.advwatres.2024.104740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The simplified view of two-phase flow, such as oil and gas, in a fracture is often assumed to occur in a stratified behavior. However, recent studies and production practices have revealed that two-phase flow in fractures exhibits diverse flow patterns. This paper investigates the control of the fracture aperture, fluids viscosity, and wettability on two-phase flow in a 2D cross section of a 3D Berea fracture. Lattice Boltzmann Method (LBM) simulations are used to model the impact of these properties on relative permeability curves. Notably, in strongly wet fractures, two distinct permeability regimes emerge. High aperture values exhibit behavior resembling parallel planes, while low aperture values lead to a linear decrease in permeability due to fluid interactions between fracture surfaces. Conversely, anomalous behavior of the relative permeability curves is identified in weakly wet fractures within specific aperture ranges. This behavior is associated with the occurrence of specific flow patterns within the fracture. Results also emphasize that changes in viscosity ratio do not affect the presence or the saturation range of the anomalous behavior but do influence its intensity for each fluid. Comparisons with Poiseuille profile equations reveal the limited impact of the fracture roughness. These findings enhance our understanding of the interactions between aperture, viscosity, and wettability and how they control the shape of the relative permeability curves. These curves are pivotal parameters for the continuum scale modeling (reservoir models) in oil and gas application, for instance.</p></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"190 \",\"pages\":\"Article 104740\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824001271\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001271","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Pore-scale insights into relative permeability in strongly and weakly wet natural fractures: A Lattice Boltzmann Method 2D simulation study
The simplified view of two-phase flow, such as oil and gas, in a fracture is often assumed to occur in a stratified behavior. However, recent studies and production practices have revealed that two-phase flow in fractures exhibits diverse flow patterns. This paper investigates the control of the fracture aperture, fluids viscosity, and wettability on two-phase flow in a 2D cross section of a 3D Berea fracture. Lattice Boltzmann Method (LBM) simulations are used to model the impact of these properties on relative permeability curves. Notably, in strongly wet fractures, two distinct permeability regimes emerge. High aperture values exhibit behavior resembling parallel planes, while low aperture values lead to a linear decrease in permeability due to fluid interactions between fracture surfaces. Conversely, anomalous behavior of the relative permeability curves is identified in weakly wet fractures within specific aperture ranges. This behavior is associated with the occurrence of specific flow patterns within the fracture. Results also emphasize that changes in viscosity ratio do not affect the presence or the saturation range of the anomalous behavior but do influence its intensity for each fluid. Comparisons with Poiseuille profile equations reveal the limited impact of the fracture roughness. These findings enhance our understanding of the interactions between aperture, viscosity, and wettability and how they control the shape of the relative permeability curves. These curves are pivotal parameters for the continuum scale modeling (reservoir models) in oil and gas application, for instance.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes