Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Luca Rossini , Byliole S. Djouda , Sansao A. Pedro
{"title":"用于预测温度影响下昆虫数量的通用风险评估指数","authors":"Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Luca Rossini , Byliole S. Djouda , Sansao A. Pedro","doi":"10.1016/j.jtherbio.2024.103886","DOIUrl":null,"url":null,"abstract":"<div><p>Life history traits have been studied under various environmental factors, but the ability to combine them into a simple function to assess pest response to climate is still lacking complete understanding. This study proposed a risk index derived by combining development, mortality, and fertility rates from a stage-structured dynamic mathematical model. The first part presents the theoretical framework behind the risk index. The second part of the study is concerned with the application of the index in two case studies of major economic pest: the brown planthopper (<em>Nilaparvata lugens</em>) and the spotted wing drosophila (<em>Drosophila suzukii</em>), pests of rice crops and soft fruits, respectively. The mathematical calculations provided a single function composed of the main thermal biodemographic rates. This function has a threshold value that determines the possibility of population increase as a function of temperature. The tests carried out on the two pest species showed the capability of the index to describe the range of favourable conditions. With this approach, we were able to identify areas where pests are tolerant to climatic conditions and to project them on a geospatial risk map. The theoretical background developed here provided a tool for understanding the biogeography of <em>Nilaparvata lugens</em> and <em>Drosophila suzukii</em>. It is flexible enough to deal with mathematically simple (<em>N. lugens</em>) and complex (<em>D. Suzukii</em>) case studies of crop insect pests. It produces biologically sound indices that behave like thermal performance curves. These theoretical results also provide a reasonable basis for addressing the challenge of pest management in the context of seasonal weather variations and climate change. This may help to improve monitoring and design management strategies to limit the spread of pests in invaded areas, as some non-invaded areas may be suitable for the species to develop.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001049/pdfft?md5=f48a8a82f6f5927f116bff48d017601e&pid=1-s2.0-S0306456524001049-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A generalized risk assessment index for forecasting insect population under the effect of temperature\",\"authors\":\"Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Luca Rossini , Byliole S. Djouda , Sansao A. Pedro\",\"doi\":\"10.1016/j.jtherbio.2024.103886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Life history traits have been studied under various environmental factors, but the ability to combine them into a simple function to assess pest response to climate is still lacking complete understanding. This study proposed a risk index derived by combining development, mortality, and fertility rates from a stage-structured dynamic mathematical model. The first part presents the theoretical framework behind the risk index. The second part of the study is concerned with the application of the index in two case studies of major economic pest: the brown planthopper (<em>Nilaparvata lugens</em>) and the spotted wing drosophila (<em>Drosophila suzukii</em>), pests of rice crops and soft fruits, respectively. The mathematical calculations provided a single function composed of the main thermal biodemographic rates. This function has a threshold value that determines the possibility of population increase as a function of temperature. The tests carried out on the two pest species showed the capability of the index to describe the range of favourable conditions. With this approach, we were able to identify areas where pests are tolerant to climatic conditions and to project them on a geospatial risk map. The theoretical background developed here provided a tool for understanding the biogeography of <em>Nilaparvata lugens</em> and <em>Drosophila suzukii</em>. It is flexible enough to deal with mathematically simple (<em>N. lugens</em>) and complex (<em>D. Suzukii</em>) case studies of crop insect pests. It produces biologically sound indices that behave like thermal performance curves. These theoretical results also provide a reasonable basis for addressing the challenge of pest management in the context of seasonal weather variations and climate change. This may help to improve monitoring and design management strategies to limit the spread of pests in invaded areas, as some non-invaded areas may be suitable for the species to develop.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001049/pdfft?md5=f48a8a82f6f5927f116bff48d017601e&pid=1-s2.0-S0306456524001049-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A generalized risk assessment index for forecasting insect population under the effect of temperature
Life history traits have been studied under various environmental factors, but the ability to combine them into a simple function to assess pest response to climate is still lacking complete understanding. This study proposed a risk index derived by combining development, mortality, and fertility rates from a stage-structured dynamic mathematical model. The first part presents the theoretical framework behind the risk index. The second part of the study is concerned with the application of the index in two case studies of major economic pest: the brown planthopper (Nilaparvata lugens) and the spotted wing drosophila (Drosophila suzukii), pests of rice crops and soft fruits, respectively. The mathematical calculations provided a single function composed of the main thermal biodemographic rates. This function has a threshold value that determines the possibility of population increase as a function of temperature. The tests carried out on the two pest species showed the capability of the index to describe the range of favourable conditions. With this approach, we were able to identify areas where pests are tolerant to climatic conditions and to project them on a geospatial risk map. The theoretical background developed here provided a tool for understanding the biogeography of Nilaparvata lugens and Drosophila suzukii. It is flexible enough to deal with mathematically simple (N. lugens) and complex (D. Suzukii) case studies of crop insect pests. It produces biologically sound indices that behave like thermal performance curves. These theoretical results also provide a reasonable basis for addressing the challenge of pest management in the context of seasonal weather variations and climate change. This may help to improve monitoring and design management strategies to limit the spread of pests in invaded areas, as some non-invaded areas may be suitable for the species to develop.