Ju Young Lee, Yong Seong Lee, Jong Hyun Tae, In Ho Chang, Tae-Hyoung Kim, Soon Chul Myung, Tuan Thanh Nguyen, Jae Hyeok Lee, Joongwon Choi, Jung Hoon Kim, Jin Wook Kim, Se Young Choi
{"title":"选择用于膀胱镜图像膀胱肿瘤分类的卷积神经网络模型并与人类进行比较。","authors":"Ju Young Lee, Yong Seong Lee, Jong Hyun Tae, In Ho Chang, Tae-Hyoung Kim, Soon Chul Myung, Tuan Thanh Nguyen, Jae Hyeok Lee, Joongwon Choi, Jung Hoon Kim, Jin Wook Kim, Se Young Choi","doi":"10.1089/end.2024.0250","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> An investigation of various convolutional neural network (CNN)-based deep learning algorithms was conducted to select the appropriate artificial intelligence (AI) model for calculating the diagnostic performance of bladder tumor classification on cystoscopy images, with the performance of the selected model to be compared against that of medical students and urologists. <b><i>Methods:</i></b> A total of 3,731 cystoscopic images that contained 2,191 tumor images were obtained from 543 bladder tumor cases and 219 normal cases were evaluated. A total of 17 CNN models were trained for tumor classification with various hyperparameters. The diagnostic performance of the selected AI model was compared with the results obtained from urologists and medical students by using the receiver operating characteristic (ROC) curve graph and metrics. <b><i>Results:</i></b> EfficientNetB0 was selected as the appropriate AI model. In the test results, EfficientNetB0 achieved a balanced accuracy of 81%, sensitivity of 88%, specificity of 74%, and an area under the curve (AUC) of 92%. In contrast, human-derived diagnostic statistics for the test data showed an average balanced accuracy of 75%, sensitivity of 94%, and specificity of 55%. Specifically, urologists had an average balanced accuracy of 91%, sensitivity of 95%, and specificity of 88%, while medical students had an average balanced accuracy of 69%, sensitivity of 94%, and specificity of 44%. <b><i>Conclusions:</i></b> Among the various AI models, we suggest that EfficientNetB0 is an appropriate AI classification model for determining the presence of bladder tumors in cystoscopic images. EfficientNetB0 showed the highest performance among several models and showed high accuracy and specificity compared to medical students. This AI technology will be helpful for less experienced urologists or nonurologists in making diagnoses. Image-based deep learning classifies bladder cancer using cystoscopy images and shows promise for generalized applications in biomedical image analysis and clinical decision making.</p>","PeriodicalId":15723,"journal":{"name":"Journal of endourology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of Convolutional Neural Network Model for Bladder Tumor Classification of Cystoscopy Images and Comparison with Humans.\",\"authors\":\"Ju Young Lee, Yong Seong Lee, Jong Hyun Tae, In Ho Chang, Tae-Hyoung Kim, Soon Chul Myung, Tuan Thanh Nguyen, Jae Hyeok Lee, Joongwon Choi, Jung Hoon Kim, Jin Wook Kim, Se Young Choi\",\"doi\":\"10.1089/end.2024.0250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Purpose:</i></b> An investigation of various convolutional neural network (CNN)-based deep learning algorithms was conducted to select the appropriate artificial intelligence (AI) model for calculating the diagnostic performance of bladder tumor classification on cystoscopy images, with the performance of the selected model to be compared against that of medical students and urologists. <b><i>Methods:</i></b> A total of 3,731 cystoscopic images that contained 2,191 tumor images were obtained from 543 bladder tumor cases and 219 normal cases were evaluated. A total of 17 CNN models were trained for tumor classification with various hyperparameters. The diagnostic performance of the selected AI model was compared with the results obtained from urologists and medical students by using the receiver operating characteristic (ROC) curve graph and metrics. <b><i>Results:</i></b> EfficientNetB0 was selected as the appropriate AI model. In the test results, EfficientNetB0 achieved a balanced accuracy of 81%, sensitivity of 88%, specificity of 74%, and an area under the curve (AUC) of 92%. In contrast, human-derived diagnostic statistics for the test data showed an average balanced accuracy of 75%, sensitivity of 94%, and specificity of 55%. Specifically, urologists had an average balanced accuracy of 91%, sensitivity of 95%, and specificity of 88%, while medical students had an average balanced accuracy of 69%, sensitivity of 94%, and specificity of 44%. <b><i>Conclusions:</i></b> Among the various AI models, we suggest that EfficientNetB0 is an appropriate AI classification model for determining the presence of bladder tumors in cystoscopic images. EfficientNetB0 showed the highest performance among several models and showed high accuracy and specificity compared to medical students. This AI technology will be helpful for less experienced urologists or nonurologists in making diagnoses. Image-based deep learning classifies bladder cancer using cystoscopy images and shows promise for generalized applications in biomedical image analysis and clinical decision making.</p>\",\"PeriodicalId\":15723,\"journal\":{\"name\":\"Journal of endourology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of endourology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/end.2024.0250\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endourology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/end.2024.0250","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Selection of Convolutional Neural Network Model for Bladder Tumor Classification of Cystoscopy Images and Comparison with Humans.
Purpose: An investigation of various convolutional neural network (CNN)-based deep learning algorithms was conducted to select the appropriate artificial intelligence (AI) model for calculating the diagnostic performance of bladder tumor classification on cystoscopy images, with the performance of the selected model to be compared against that of medical students and urologists. Methods: A total of 3,731 cystoscopic images that contained 2,191 tumor images were obtained from 543 bladder tumor cases and 219 normal cases were evaluated. A total of 17 CNN models were trained for tumor classification with various hyperparameters. The diagnostic performance of the selected AI model was compared with the results obtained from urologists and medical students by using the receiver operating characteristic (ROC) curve graph and metrics. Results: EfficientNetB0 was selected as the appropriate AI model. In the test results, EfficientNetB0 achieved a balanced accuracy of 81%, sensitivity of 88%, specificity of 74%, and an area under the curve (AUC) of 92%. In contrast, human-derived diagnostic statistics for the test data showed an average balanced accuracy of 75%, sensitivity of 94%, and specificity of 55%. Specifically, urologists had an average balanced accuracy of 91%, sensitivity of 95%, and specificity of 88%, while medical students had an average balanced accuracy of 69%, sensitivity of 94%, and specificity of 44%. Conclusions: Among the various AI models, we suggest that EfficientNetB0 is an appropriate AI classification model for determining the presence of bladder tumors in cystoscopic images. EfficientNetB0 showed the highest performance among several models and showed high accuracy and specificity compared to medical students. This AI technology will be helpful for less experienced urologists or nonurologists in making diagnoses. Image-based deep learning classifies bladder cancer using cystoscopy images and shows promise for generalized applications in biomedical image analysis and clinical decision making.
期刊介绍:
Journal of Endourology, JE Case Reports, and Videourology are the leading peer-reviewed journal, case reports publication, and innovative videojournal companion covering all aspects of minimally invasive urology research, applications, and clinical outcomes.
The leading journal of minimally invasive urology for over 30 years, Journal of Endourology is the essential publication for practicing surgeons who want to keep up with the latest surgical technologies in endoscopic, laparoscopic, robotic, and image-guided procedures as they apply to benign and malignant diseases of the genitourinary tract. This flagship journal includes the companion videojournal Videourology™ with every subscription. While Journal of Endourology remains focused on publishing rigorously peer reviewed articles, Videourology accepts original videos containing material that has not been reported elsewhere, except in the form of an abstract or a conference presentation.
Journal of Endourology coverage includes:
The latest laparoscopic, robotic, endoscopic, and image-guided techniques for treating both benign and malignant conditions
Pioneering research articles
Controversial cases in endourology
Techniques in endourology with accompanying videos
Reviews and epochs in endourology
Endourology survey section of endourology relevant manuscripts published in other journals.