{"title":"具有成骨和抗炎特性的双功能柚皮苷明胶甲基丙烯酰支架。","authors":"","doi":"10.1016/j.dental.2024.06.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To fabricate and characterize an innovative gelatin methacryloyl/GelMA electrospun scaffold containing the citrus flavonoid naringenin/NA with osteogenic and anti-inflammatory properties.</p></div><div><h3>Methods</h3><p><span>GelMA scaffolds (15 % w/v) containing 0/Control, 5, 10, or 20 % of NA w/w were obtained via electrospinning. The chemical composition, fiber morphology/diameter, swelling/degradation profile, and NA release were investigated. Cytotoxicity, cell proliferation, adhesion and spreading, total protein/TP production, alkaline phosphatase/ALP activity, osteogenic genes expression (OCN, </span>OPN<span>, RUNX2), and mineralized nodules deposition/MND with human alveolar bone-derived mesenchymal stem cells (aBMSCs) seeded on the scaffolds were assessed. Moreover, aBMSCs seeded on the scaffolds and stimulated with tumor necrosis factor-alpha/TNF-α were submitted to collagen, nitric oxide/NO, interleukin/IL-1α, and IL-6 production assessment. Data were analyzed using ANOVA and t-student/post-hoc tests (α = 5 %).</span></p></div><div><h3>Results</h3><p><span>NA-laden scaffolds presented increased fiber diameter, lower swelling capacity, and faster degradation profile over 28 days (p < 0.05). NA release was detected over time. Cell adhesion and spreading, and TP production were similar between GelMA and GelMA+NA5 % scaffolds, while cell proliferation, ALP activity, OCN/OPN/RUNX2 gene expression, and MND were higher for GelMA+NA5 % scaffolds (p < 0.05). Cells seeded on control scaffolds and TNF-α-stimulated presented higher levels of NO, IL-1α/IL-6, and lower levels of collagen (p < 0.05). In contrast, cells seeded on GelMA+NA5 % scaffolds showed </span>downregulation<span> of inflammatory markers and higher collagen synthesis (p < 0.05).</span></p></div><div><h3>Significance</h3><p>GelMA+NA5 % scaffold was cytocompatible, stimulated aBMSCs proliferation and differentiation, and downregulated inflammatory mediators’ synthesis, suggesting its therapeutic effect as a multi-target bifunctional scaffold with osteogenic and anti-inflammatory properties for bone tissue engineering.</p></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"40 9","pages":"Pages 1353-1363"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional naringenin-laden gelatin methacryloyl scaffolds with osteogenic and anti-inflammatory properties\",\"authors\":\"\",\"doi\":\"10.1016/j.dental.2024.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To fabricate and characterize an innovative gelatin methacryloyl/GelMA electrospun scaffold containing the citrus flavonoid naringenin/NA with osteogenic and anti-inflammatory properties.</p></div><div><h3>Methods</h3><p><span>GelMA scaffolds (15 % w/v) containing 0/Control, 5, 10, or 20 % of NA w/w were obtained via electrospinning. The chemical composition, fiber morphology/diameter, swelling/degradation profile, and NA release were investigated. Cytotoxicity, cell proliferation, adhesion and spreading, total protein/TP production, alkaline phosphatase/ALP activity, osteogenic genes expression (OCN, </span>OPN<span>, RUNX2), and mineralized nodules deposition/MND with human alveolar bone-derived mesenchymal stem cells (aBMSCs) seeded on the scaffolds were assessed. Moreover, aBMSCs seeded on the scaffolds and stimulated with tumor necrosis factor-alpha/TNF-α were submitted to collagen, nitric oxide/NO, interleukin/IL-1α, and IL-6 production assessment. Data were analyzed using ANOVA and t-student/post-hoc tests (α = 5 %).</span></p></div><div><h3>Results</h3><p><span>NA-laden scaffolds presented increased fiber diameter, lower swelling capacity, and faster degradation profile over 28 days (p < 0.05). NA release was detected over time. Cell adhesion and spreading, and TP production were similar between GelMA and GelMA+NA5 % scaffolds, while cell proliferation, ALP activity, OCN/OPN/RUNX2 gene expression, and MND were higher for GelMA+NA5 % scaffolds (p < 0.05). Cells seeded on control scaffolds and TNF-α-stimulated presented higher levels of NO, IL-1α/IL-6, and lower levels of collagen (p < 0.05). In contrast, cells seeded on GelMA+NA5 % scaffolds showed </span>downregulation<span> of inflammatory markers and higher collagen synthesis (p < 0.05).</span></p></div><div><h3>Significance</h3><p>GelMA+NA5 % scaffold was cytocompatible, stimulated aBMSCs proliferation and differentiation, and downregulated inflammatory mediators’ synthesis, suggesting its therapeutic effect as a multi-target bifunctional scaffold with osteogenic and anti-inflammatory properties for bone tissue engineering.</p></div>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\"40 9\",\"pages\":\"Pages 1353-1363\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0109564124001726\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124001726","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Bifunctional naringenin-laden gelatin methacryloyl scaffolds with osteogenic and anti-inflammatory properties
Objective
To fabricate and characterize an innovative gelatin methacryloyl/GelMA electrospun scaffold containing the citrus flavonoid naringenin/NA with osteogenic and anti-inflammatory properties.
Methods
GelMA scaffolds (15 % w/v) containing 0/Control, 5, 10, or 20 % of NA w/w were obtained via electrospinning. The chemical composition, fiber morphology/diameter, swelling/degradation profile, and NA release were investigated. Cytotoxicity, cell proliferation, adhesion and spreading, total protein/TP production, alkaline phosphatase/ALP activity, osteogenic genes expression (OCN, OPN, RUNX2), and mineralized nodules deposition/MND with human alveolar bone-derived mesenchymal stem cells (aBMSCs) seeded on the scaffolds were assessed. Moreover, aBMSCs seeded on the scaffolds and stimulated with tumor necrosis factor-alpha/TNF-α were submitted to collagen, nitric oxide/NO, interleukin/IL-1α, and IL-6 production assessment. Data were analyzed using ANOVA and t-student/post-hoc tests (α = 5 %).
Results
NA-laden scaffolds presented increased fiber diameter, lower swelling capacity, and faster degradation profile over 28 days (p < 0.05). NA release was detected over time. Cell adhesion and spreading, and TP production were similar between GelMA and GelMA+NA5 % scaffolds, while cell proliferation, ALP activity, OCN/OPN/RUNX2 gene expression, and MND were higher for GelMA+NA5 % scaffolds (p < 0.05). Cells seeded on control scaffolds and TNF-α-stimulated presented higher levels of NO, IL-1α/IL-6, and lower levels of collagen (p < 0.05). In contrast, cells seeded on GelMA+NA5 % scaffolds showed downregulation of inflammatory markers and higher collagen synthesis (p < 0.05).
Significance
GelMA+NA5 % scaffold was cytocompatible, stimulated aBMSCs proliferation and differentiation, and downregulated inflammatory mediators’ synthesis, suggesting its therapeutic effect as a multi-target bifunctional scaffold with osteogenic and anti-inflammatory properties for bone tissue engineering.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.