Yang Zhou, Zhengfeng Guo, Honggang Gu, Yanqiang Li, Yipeng Song, Shiyuan Liu, Maochun Hong, Sangen Zhao, Junhua Luo
{"title":"一种具有巨大光学各向异性的溶液可加工天然晶体,可有效控制光的偏振","authors":"Yang Zhou, Zhengfeng Guo, Honggang Gu, Yanqiang Li, Yipeng Song, Shiyuan Liu, Maochun Hong, Sangen Zhao, Junhua Luo","doi":"10.1038/s41566-024-01461-8","DOIUrl":null,"url":null,"abstract":"Optical anisotropy, a spatially asymmetric light–matter interaction that manifests itself as birefringence and dichroism, is paramount for manipulating light polarization in modern optics. So far, various natural birefringent crystals are widely used, but their birefringence is limited to <0.3. Here we demonstrate a solution-processable natural crystal C3H8N6I6·3H2O with giant birefringence up to 2.8 within the visible to infrared spectral region. Combining critical point analysis and the first-principles calculations, we reveal that this giant optical anisotropy mainly comes from the linear (I3)− structural units in a parallel arrangement, which maximizes the difference of polarizability along the different crystallographic axes. This work highlights the potential of natural polyiodide crystals as an outstanding platform to satisfy the increasing demand for photonic applications that exploit polarization in optical communication, three-dimensional imaging, ultrahigh-resolution sensing and other tasks. A crystal with giant birefringence in the visible and infrared could benefit applications that rely on manipulating optical polarization.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 9","pages":"922-927"},"PeriodicalIF":32.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solution-processable natural crystal with giant optical anisotropy for efficient manipulation of light polarization\",\"authors\":\"Yang Zhou, Zhengfeng Guo, Honggang Gu, Yanqiang Li, Yipeng Song, Shiyuan Liu, Maochun Hong, Sangen Zhao, Junhua Luo\",\"doi\":\"10.1038/s41566-024-01461-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical anisotropy, a spatially asymmetric light–matter interaction that manifests itself as birefringence and dichroism, is paramount for manipulating light polarization in modern optics. So far, various natural birefringent crystals are widely used, but their birefringence is limited to <0.3. Here we demonstrate a solution-processable natural crystal C3H8N6I6·3H2O with giant birefringence up to 2.8 within the visible to infrared spectral region. Combining critical point analysis and the first-principles calculations, we reveal that this giant optical anisotropy mainly comes from the linear (I3)− structural units in a parallel arrangement, which maximizes the difference of polarizability along the different crystallographic axes. This work highlights the potential of natural polyiodide crystals as an outstanding platform to satisfy the increasing demand for photonic applications that exploit polarization in optical communication, three-dimensional imaging, ultrahigh-resolution sensing and other tasks. A crystal with giant birefringence in the visible and infrared could benefit applications that rely on manipulating optical polarization.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 9\",\"pages\":\"922-927\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01461-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01461-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
A solution-processable natural crystal with giant optical anisotropy for efficient manipulation of light polarization
Optical anisotropy, a spatially asymmetric light–matter interaction that manifests itself as birefringence and dichroism, is paramount for manipulating light polarization in modern optics. So far, various natural birefringent crystals are widely used, but their birefringence is limited to <0.3. Here we demonstrate a solution-processable natural crystal C3H8N6I6·3H2O with giant birefringence up to 2.8 within the visible to infrared spectral region. Combining critical point analysis and the first-principles calculations, we reveal that this giant optical anisotropy mainly comes from the linear (I3)− structural units in a parallel arrangement, which maximizes the difference of polarizability along the different crystallographic axes. This work highlights the potential of natural polyiodide crystals as an outstanding platform to satisfy the increasing demand for photonic applications that exploit polarization in optical communication, three-dimensional imaging, ultrahigh-resolution sensing and other tasks. A crystal with giant birefringence in the visible and infrared could benefit applications that rely on manipulating optical polarization.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.