Lasse Schrøder Jakobsen, Afshin Samani, Kevin Desbrosses, Mark de Zee, Pascal Madeleine
{"title":"被动式背部外骨骼的现场训练改变了物流工人的生物力学。","authors":"Lasse Schrøder Jakobsen, Afshin Samani, Kevin Desbrosses, Mark de Zee, Pascal Madeleine","doi":"10.1080/24725838.2024.2359371","DOIUrl":null,"url":null,"abstract":"<p><p>OCCUPATIONAL APPLICATIONSOccupational exoskeletons receive rising interest in industry as these devices diminish the biomechanical load during manual materials handling. Still, we have limited knowledge when it comes to in-field use. This gap often contributes to failure in the implementation of exoskeleton in industry. In this study, we investigated how a training protocol consisting of in-field use of a passive back exoskeleton affected the biomechanics of logistic workers. More specifically, we focused on how the variation of the muscular and kinematic patterns of the user was altered after exoskeleton training. We found that training had a positive effect on exoskeleton use, as a relative decrease of 6-9% in peak back muscle activity was observed post-training. Additionally, training decreased knee flexion by 6°-16°, indicating a more stoop lifting technique. The findings point at the potential benefits of applying a training approach when implementing a back-supporting exoskeleton in logistics.</p>","PeriodicalId":73332,"journal":{"name":"IISE transactions on occupational ergonomics and human factors","volume":" ","pages":"149-161"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.\",\"authors\":\"Lasse Schrøder Jakobsen, Afshin Samani, Kevin Desbrosses, Mark de Zee, Pascal Madeleine\",\"doi\":\"10.1080/24725838.2024.2359371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>OCCUPATIONAL APPLICATIONSOccupational exoskeletons receive rising interest in industry as these devices diminish the biomechanical load during manual materials handling. Still, we have limited knowledge when it comes to in-field use. This gap often contributes to failure in the implementation of exoskeleton in industry. In this study, we investigated how a training protocol consisting of in-field use of a passive back exoskeleton affected the biomechanics of logistic workers. More specifically, we focused on how the variation of the muscular and kinematic patterns of the user was altered after exoskeleton training. We found that training had a positive effect on exoskeleton use, as a relative decrease of 6-9% in peak back muscle activity was observed post-training. Additionally, training decreased knee flexion by 6°-16°, indicating a more stoop lifting technique. The findings point at the potential benefits of applying a training approach when implementing a back-supporting exoskeleton in logistics.</p>\",\"PeriodicalId\":73332,\"journal\":{\"name\":\"IISE transactions on occupational ergonomics and human factors\",\"volume\":\" \",\"pages\":\"149-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE transactions on occupational ergonomics and human factors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24725838.2024.2359371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE transactions on occupational ergonomics and human factors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725838.2024.2359371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers.
OCCUPATIONAL APPLICATIONSOccupational exoskeletons receive rising interest in industry as these devices diminish the biomechanical load during manual materials handling. Still, we have limited knowledge when it comes to in-field use. This gap often contributes to failure in the implementation of exoskeleton in industry. In this study, we investigated how a training protocol consisting of in-field use of a passive back exoskeleton affected the biomechanics of logistic workers. More specifically, we focused on how the variation of the muscular and kinematic patterns of the user was altered after exoskeleton training. We found that training had a positive effect on exoskeleton use, as a relative decrease of 6-9% in peak back muscle activity was observed post-training. Additionally, training decreased knee flexion by 6°-16°, indicating a more stoop lifting technique. The findings point at the potential benefits of applying a training approach when implementing a back-supporting exoskeleton in logistics.