从内到外:探索细胞外抗菌组蛋白衍生肽这一多才多艺的分子。

IF 2.1 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Carolina Muñoz-Camargo, Juan C. Cruz
{"title":"从内到外:探索细胞外抗菌组蛋白衍生肽这一多才多艺的分子。","authors":"Carolina Muñoz-Camargo, Juan C. Cruz","doi":"10.1038/s41429-024-00744-0","DOIUrl":null,"url":null,"abstract":"The emergence of bacterial resistance to antibiotics poses a global health threat, necessitating innovative solutions. The contemporary challenge lies in bacterial resistance, impacting morbidity, mortality, and global economies. Antimicrobial peptides (AMPs) offer a promising avenue for addressing antibiotic resistance. The Antimicrobial Peptide Database catalogs 3569 peptides from various organisms, representing a rich resource for drug development. Histones, traditionally recognized for their role in nucleosome structures, have gained attention for their extracellular functions, including antimicrobial and immunomodulatory properties. This review aims to thoroughly investigate antimicrobial peptides derived from histones in various organisms, elucidating their mechanisms. In addition, it gives us clues about how extracellular histones might be used in drug delivery systems to fight bacterial infections. This comprehensive analysis emphasizes the importance of histone-derived peptides in developing innovative therapeutic strategies for evolving bacterial challenges.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 9","pages":"553-568"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41429-024-00744-0.pdf","citationCount":"0","resultStr":"{\"title\":\"From inside to outside: exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules\",\"authors\":\"Carolina Muñoz-Camargo, Juan C. Cruz\",\"doi\":\"10.1038/s41429-024-00744-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of bacterial resistance to antibiotics poses a global health threat, necessitating innovative solutions. The contemporary challenge lies in bacterial resistance, impacting morbidity, mortality, and global economies. Antimicrobial peptides (AMPs) offer a promising avenue for addressing antibiotic resistance. The Antimicrobial Peptide Database catalogs 3569 peptides from various organisms, representing a rich resource for drug development. Histones, traditionally recognized for their role in nucleosome structures, have gained attention for their extracellular functions, including antimicrobial and immunomodulatory properties. This review aims to thoroughly investigate antimicrobial peptides derived from histones in various organisms, elucidating their mechanisms. In addition, it gives us clues about how extracellular histones might be used in drug delivery systems to fight bacterial infections. This comprehensive analysis emphasizes the importance of histone-derived peptides in developing innovative therapeutic strategies for evolving bacterial challenges.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"77 9\",\"pages\":\"553-568\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41429-024-00744-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00744-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00744-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌对抗生素耐药性的出现对全球健康构成威胁,需要创新的解决方案。当代的挑战在于细菌耐药性,它影响着发病率、死亡率和全球经济。抗菌肽(AMPs)为解决抗生素耐药性问题提供了一条前景广阔的途径。抗菌肽数据库(Antimicrobial Peptide Database)收录了来自各种生物的 3569 种肽,为药物开发提供了丰富的资源。组蛋白历来被认为在核小体结构中发挥作用,但其细胞外功能(包括抗菌和免疫调节特性)也日益受到关注。本综述旨在深入研究各种生物体内组蛋白衍生的抗菌肽,阐明其作用机制。此外,它还为我们提供了细胞外组蛋白如何用于给药系统以对抗细菌感染的线索。这项全面的分析强调了组蛋白衍生肽在开发创新治疗策略以应对不断变化的细菌挑战方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From inside to outside: exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules

From inside to outside: exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules

From inside to outside: exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules
The emergence of bacterial resistance to antibiotics poses a global health threat, necessitating innovative solutions. The contemporary challenge lies in bacterial resistance, impacting morbidity, mortality, and global economies. Antimicrobial peptides (AMPs) offer a promising avenue for addressing antibiotic resistance. The Antimicrobial Peptide Database catalogs 3569 peptides from various organisms, representing a rich resource for drug development. Histones, traditionally recognized for their role in nucleosome structures, have gained attention for their extracellular functions, including antimicrobial and immunomodulatory properties. This review aims to thoroughly investigate antimicrobial peptides derived from histones in various organisms, elucidating their mechanisms. In addition, it gives us clues about how extracellular histones might be used in drug delivery systems to fight bacterial infections. This comprehensive analysis emphasizes the importance of histone-derived peptides in developing innovative therapeutic strategies for evolving bacterial challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Antibiotics
Journal of Antibiotics 医学-免疫学
CiteScore
6.60
自引率
3.00%
发文量
87
审稿时长
1 months
期刊介绍: The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Discovery of new antibiotics and related types of biologically active substances Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信