Jesse R Janoski, Ignacio Aiello, Clayton W Lundberg, Carla V Finkielstein
{"title":"与人类病症有关的昼夜节律钟基因多态性。","authors":"Jesse R Janoski, Ignacio Aiello, Clayton W Lundberg, Carla V Finkielstein","doi":"10.1016/j.tig.2024.05.006","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"834-852"},"PeriodicalIF":13.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circadian clock gene polymorphisms implicated in human pathologies.\",\"authors\":\"Jesse R Janoski, Ignacio Aiello, Clayton W Lundberg, Carla V Finkielstein\",\"doi\":\"10.1016/j.tig.2024.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"834-852\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2024.05.006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2024.05.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Circadian clock gene polymorphisms implicated in human pathologies.
Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.