{"title":"各种采样方案下连续时间分支树的祖先生殖偏差","authors":"Jan Lukas Igelbrink, Jasper Ischebeck","doi":"10.1007/s00285-024-02105-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cheek and Johnston (JMB 86:70, 2023) consider a continuous-time Bienaymé-Galton-Watson tree conditioned on being alive at time T. They study the reproduction events along the ancestral lineage of an individual randomly sampled from all those alive at time T. We give a short proof of an extension of their main results (Cheek and Johnston in JMB 86:70, 2023, Theorems 2.3 and 2.4) to the more general case of Bellman-Harris processes. Our proof also sheds light onto the probabilistic structure of the rate of the reproduction events. A similar method will be applied to explain (i) the different ancestral reproduction bias appearing in work by Geiger (JAP 36:301-309, 1999) and (ii) the fact that the sampling rule considered by Chauvin et al. (SPA 39:117-130, 1991), (Theorem 1) leads to a time homogeneous process along the ancestral lineage.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 1","pages":"11"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ancestral reproductive bias in continuous-time branching trees under various sampling schemes.\",\"authors\":\"Jan Lukas Igelbrink, Jasper Ischebeck\",\"doi\":\"10.1007/s00285-024-02105-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cheek and Johnston (JMB 86:70, 2023) consider a continuous-time Bienaymé-Galton-Watson tree conditioned on being alive at time T. They study the reproduction events along the ancestral lineage of an individual randomly sampled from all those alive at time T. We give a short proof of an extension of their main results (Cheek and Johnston in JMB 86:70, 2023, Theorems 2.3 and 2.4) to the more general case of Bellman-Harris processes. Our proof also sheds light onto the probabilistic structure of the rate of the reproduction events. A similar method will be applied to explain (i) the different ancestral reproduction bias appearing in work by Geiger (JAP 36:301-309, 1999) and (ii) the fact that the sampling rule considered by Chauvin et al. (SPA 39:117-130, 1991), (Theorem 1) leads to a time homogeneous process along the ancestral lineage.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"89 1\",\"pages\":\"11\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02105-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02105-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Ancestral reproductive bias in continuous-time branching trees under various sampling schemes.
Cheek and Johnston (JMB 86:70, 2023) consider a continuous-time Bienaymé-Galton-Watson tree conditioned on being alive at time T. They study the reproduction events along the ancestral lineage of an individual randomly sampled from all those alive at time T. We give a short proof of an extension of their main results (Cheek and Johnston in JMB 86:70, 2023, Theorems 2.3 and 2.4) to the more general case of Bellman-Harris processes. Our proof also sheds light onto the probabilistic structure of the rate of the reproduction events. A similar method will be applied to explain (i) the different ancestral reproduction bias appearing in work by Geiger (JAP 36:301-309, 1999) and (ii) the fact that the sampling rule considered by Chauvin et al. (SPA 39:117-130, 1991), (Theorem 1) leads to a time homogeneous process along the ancestral lineage.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.