量化硫化琥珀酸地质细菌的生长:基于醋酸盐浓度作为氧化底物的数学模型。

IF 2.6 4区 工程技术 Q1 Mathematics
Virgínia Villa-Cruz, Sumaya Jaimes-Reátegui, Juana E Alba-Cuevas, Lily Xochilt Zelaya-Molina, Rider Jaimes-Reátegui, Alexander N Pisarchik
{"title":"量化硫化琥珀酸地质细菌的生长:基于醋酸盐浓度作为氧化底物的数学模型。","authors":"Virgínia Villa-Cruz, Sumaya Jaimes-Reátegui, Juana E Alba-Cuevas, Lily Xochilt Zelaya-Molina, Rider Jaimes-Reátegui, Alexander N Pisarchik","doi":"10.3934/mbe.2024263","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying <i>Geobacter sulfurreducens</i> growth: A mathematical model based on acetate concentration as an oxidizing substrate.\",\"authors\":\"Virgínia Villa-Cruz, Sumaya Jaimes-Reátegui, Juana E Alba-Cuevas, Lily Xochilt Zelaya-Molina, Rider Jaimes-Reátegui, Alexander N Pisarchik\",\"doi\":\"10.3934/mbe.2024263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024263\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个数学模型来模拟与革兰氏菌增殖相关的动态,并通过分析其各组成部分之间的相互作用来最终优化细胞的运行。该模型由两部分组成:初始部分由逻辑形式组成,后续部分将醋酸盐氧化作为微生物营养介质的饱和项。通过最小化实验 Geobacter 生长与数学模型之间均方误差的平方根,可以得到四个参数,因此该模型强调了加入非线性项的重要性。所确定的参数值与实验数据非常吻合,有助于深入了解制约革兰氏菌增殖的机制。此外,该模型已被转化为只有两个参数的无标度方程,以简化对定性特性的探索。这样,我们就能对固定点进行稳定性分析,并构建一个共维二叉图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Geobacter sulfurreducens growth: A mathematical model based on acetate concentration as an oxidizing substrate.

We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信