Shuangshuang Wen, Peng Zhao, Siyu Chen, Bo Deng, Qin Fang, Jishi Wang
{"title":"IKBKE 激酶抑制剂 MCCK1 对急性 B 淋巴细胞白血病细胞的影响。","authors":"Shuangshuang Wen, Peng Zhao, Siyu Chen, Bo Deng, Qin Fang, Jishi Wang","doi":"10.3934/mbe.2024228","DOIUrl":null,"url":null,"abstract":"<p><p>B-cell acute lymphoblastic leukemia (B-ALL) is a malignant blood disorder, particularly detrimental to children and adolescents, with recurrent or unresponsive cases contributing significantly to cancer-associated fatalities. IKBKE, associated with innate immunity, tumor promotion, and drug resistance, remains poorly understood in the context of B-ALL. Thus, this research aimed to explore the impact of the IKBKE inhibitor MCCK1 on B-ALL cells. The study encompassed diverse experiments, including clinical samples, in vitro and in vivo investigations. Quantitative real-time fluorescence PCR and protein blotting revealed heightened IKBKE mRNA and protein expression in B-ALL patients. Subsequent in vitro experiments with B-ALL cell lines demonstrated that MCCK1 treatment resulted in reduced cell viability and survival rates, with flow cytometry indicating cell cycle arrest. In vivo experiments using B-ALL mouse tumor models substantiated MCCK1's efficacy in impeding tumor proliferation. These findings collectively suggest that IKBKE, found to be elevated in B-ALL patients, may serve as a promising drug target, with MCCK1 demonstrating potential for inducing apoptosis in B-ALL cells both in vitro and in vivo.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of MCCK1, an inhibitor of IKBKE kinase, on acute B lymphocyte leukemia cells.\",\"authors\":\"Shuangshuang Wen, Peng Zhao, Siyu Chen, Bo Deng, Qin Fang, Jishi Wang\",\"doi\":\"10.3934/mbe.2024228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>B-cell acute lymphoblastic leukemia (B-ALL) is a malignant blood disorder, particularly detrimental to children and adolescents, with recurrent or unresponsive cases contributing significantly to cancer-associated fatalities. IKBKE, associated with innate immunity, tumor promotion, and drug resistance, remains poorly understood in the context of B-ALL. Thus, this research aimed to explore the impact of the IKBKE inhibitor MCCK1 on B-ALL cells. The study encompassed diverse experiments, including clinical samples, in vitro and in vivo investigations. Quantitative real-time fluorescence PCR and protein blotting revealed heightened IKBKE mRNA and protein expression in B-ALL patients. Subsequent in vitro experiments with B-ALL cell lines demonstrated that MCCK1 treatment resulted in reduced cell viability and survival rates, with flow cytometry indicating cell cycle arrest. In vivo experiments using B-ALL mouse tumor models substantiated MCCK1's efficacy in impeding tumor proliferation. These findings collectively suggest that IKBKE, found to be elevated in B-ALL patients, may serve as a promising drug target, with MCCK1 demonstrating potential for inducing apoptosis in B-ALL cells both in vitro and in vivo.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024228\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024228","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
The impact of MCCK1, an inhibitor of IKBKE kinase, on acute B lymphocyte leukemia cells.
B-cell acute lymphoblastic leukemia (B-ALL) is a malignant blood disorder, particularly detrimental to children and adolescents, with recurrent or unresponsive cases contributing significantly to cancer-associated fatalities. IKBKE, associated with innate immunity, tumor promotion, and drug resistance, remains poorly understood in the context of B-ALL. Thus, this research aimed to explore the impact of the IKBKE inhibitor MCCK1 on B-ALL cells. The study encompassed diverse experiments, including clinical samples, in vitro and in vivo investigations. Quantitative real-time fluorescence PCR and protein blotting revealed heightened IKBKE mRNA and protein expression in B-ALL patients. Subsequent in vitro experiments with B-ALL cell lines demonstrated that MCCK1 treatment resulted in reduced cell viability and survival rates, with flow cytometry indicating cell cycle arrest. In vivo experiments using B-ALL mouse tumor models substantiated MCCK1's efficacy in impeding tumor proliferation. These findings collectively suggest that IKBKE, found to be elevated in B-ALL patients, may serve as a promising drug target, with MCCK1 demonstrating potential for inducing apoptosis in B-ALL cells both in vitro and in vivo.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).