Hafiz Ghulam Murtza Qamar, Muhammad Farrukh Qureshi, Zohaib Mushtaq, Zubariah Zubariah, Muhammad Zia Ur Rehman, Nagwan Abdel Samee, Noha F Mahmoud, Yeong Hyeon Gu, Mohammed A Al-Masni
{"title":"利用双通路卷积神经网络对 EMG 手势信号进行分析,以诊断上肢疾病。","authors":"Hafiz Ghulam Murtza Qamar, Muhammad Farrukh Qureshi, Zohaib Mushtaq, Zubariah Zubariah, Muhammad Zia Ur Rehman, Nagwan Abdel Samee, Noha F Mahmoud, Yeong Hyeon Gu, Mohammed A Al-Masni","doi":"10.3934/mbe.2024252","DOIUrl":null,"url":null,"abstract":"<p><p>This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 4","pages":"5712-5734"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network.\",\"authors\":\"Hafiz Ghulam Murtza Qamar, Muhammad Farrukh Qureshi, Zohaib Mushtaq, Zubariah Zubariah, Muhammad Zia Ur Rehman, Nagwan Abdel Samee, Noha F Mahmoud, Yeong Hyeon Gu, Mohammed A Al-Masni\",\"doi\":\"10.3934/mbe.2024252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 4\",\"pages\":\"5712-5734\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024252\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network.
This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).