具有恐惧效应和多重延迟的改良莱斯利-高尔捕食者-猎物模型的分岔分析

IF 2.6 4区 工程技术 Q1 Mathematics
Shuo Yao, Jingen Yang, Sanling Yuan
{"title":"具有恐惧效应和多重延迟的改良莱斯利-高尔捕食者-猎物模型的分岔分析","authors":"Shuo Yao, Jingen Yang, Sanling Yuan","doi":"10.3934/mbe.2024249","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we explored a modified Leslie-Gower predator-prey model incorporating a fear effect and multiple delays. We analyzed the existence and local stability of each potential equilibrium. Furthermore, we investigated the presence of periodic solutions via Hopf bifurcation bifurcated from the positive equilibrium with respect to both delays. By utilizing the normal form theory and the center manifold theorem, we investigated the direction and stability of these periodic solutions. Our theoretical findings were validated through numerical simulations, which demonstrated that the fear delay could trigger a stability shift at the positive equilibrium. Additionally, we observed that an increase in fear intensity or the presence of substitute prey reinforces the stability of the positive equilibrium.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 4","pages":"5658-5685"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation analysis in a modified Leslie-Gower predator-prey model with fear effect and multiple delays.\",\"authors\":\"Shuo Yao, Jingen Yang, Sanling Yuan\",\"doi\":\"10.3934/mbe.2024249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we explored a modified Leslie-Gower predator-prey model incorporating a fear effect and multiple delays. We analyzed the existence and local stability of each potential equilibrium. Furthermore, we investigated the presence of periodic solutions via Hopf bifurcation bifurcated from the positive equilibrium with respect to both delays. By utilizing the normal form theory and the center manifold theorem, we investigated the direction and stability of these periodic solutions. Our theoretical findings were validated through numerical simulations, which demonstrated that the fear delay could trigger a stability shift at the positive equilibrium. Additionally, we observed that an increase in fear intensity or the presence of substitute prey reinforces the stability of the positive equilibrium.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 4\",\"pages\":\"5658-5685\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024249\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024249","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了一个包含恐惧效应和多重延迟的改良莱斯利-高尔捕食者-猎物模型。我们分析了每个潜在平衡的存在性和局部稳定性。此外,我们还研究了通过霍普夫分岔(Hopf bifurcation)从两个延迟的正平衡分岔出的周期解的存在性。通过利用正态形式理论和中心流形定理,我们研究了这些周期解的方向和稳定性。我们的理论发现通过数值模拟得到了验证,结果表明恐惧延迟会引发正平衡的稳定性转变。此外,我们还观察到,恐惧强度的增加或替代猎物的出现会加强正平衡的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation analysis in a modified Leslie-Gower predator-prey model with fear effect and multiple delays.

In this paper, we explored a modified Leslie-Gower predator-prey model incorporating a fear effect and multiple delays. We analyzed the existence and local stability of each potential equilibrium. Furthermore, we investigated the presence of periodic solutions via Hopf bifurcation bifurcated from the positive equilibrium with respect to both delays. By utilizing the normal form theory and the center manifold theorem, we investigated the direction and stability of these periodic solutions. Our theoretical findings were validated through numerical simulations, which demonstrated that the fear delay could trigger a stability shift at the positive equilibrium. Additionally, we observed that an increase in fear intensity or the presence of substitute prey reinforces the stability of the positive equilibrium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信