Lin Chen, Mingjun Wang, Zhanyu Wu, Jinbo Sun, Jianglong Li, Chun Chen, Chuan Ye
{"title":"健康信息学的进步:对内侧开刃高胫骨截骨术和外侧半月板撕裂的有限元分析。","authors":"Lin Chen, Mingjun Wang, Zhanyu Wu, Jinbo Sun, Jianglong Li, Chun Chen, Chuan Ye","doi":"10.3934/mbe.2024237","DOIUrl":null,"url":null,"abstract":"<p><p>Knee medial compartment osteoarthritis is effectively treated by a medial open-wedge high tibial osteotomy (MOWHTO). The feasibility and safety of MOWHTO for mild lateral meniscal tears are unknown. This study examined the feasibility and safety of knee joint weight-bearing line ratio (WBLr) adjustment during MOWHTO with lateral meniscal injuries. We used a healthy adult male's lower extremities computed tomography scans and knee joint magnetic resonance imaging images to create a normal fine element (FE) model. Based on this model, we generated nine FE models for the MOWHTO operation (WBLr: 40-80%) and 15 models for various lateral meniscal injuries. A compressive load of 650N was applied to all cases to calculate the von Mises stress (VMS), and the intact lateral meniscus' maximal VMS at 77.5% WBLr was accepted as the corrective upper limit stress. Our experimental results show that mild lateral meniscal tears can withstand MOWHTO, while severe tears cannot. Our findings expand the use of MOWHTO and provide a theoretical direction for practical decisions in patients with lateral meniscal injuries.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in health informatics: finite element insights into medial open-wedge high tibial osteotomy and lateral meniscal tears.\",\"authors\":\"Lin Chen, Mingjun Wang, Zhanyu Wu, Jinbo Sun, Jianglong Li, Chun Chen, Chuan Ye\",\"doi\":\"10.3934/mbe.2024237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knee medial compartment osteoarthritis is effectively treated by a medial open-wedge high tibial osteotomy (MOWHTO). The feasibility and safety of MOWHTO for mild lateral meniscal tears are unknown. This study examined the feasibility and safety of knee joint weight-bearing line ratio (WBLr) adjustment during MOWHTO with lateral meniscal injuries. We used a healthy adult male's lower extremities computed tomography scans and knee joint magnetic resonance imaging images to create a normal fine element (FE) model. Based on this model, we generated nine FE models for the MOWHTO operation (WBLr: 40-80%) and 15 models for various lateral meniscal injuries. A compressive load of 650N was applied to all cases to calculate the von Mises stress (VMS), and the intact lateral meniscus' maximal VMS at 77.5% WBLr was accepted as the corrective upper limit stress. Our experimental results show that mild lateral meniscal tears can withstand MOWHTO, while severe tears cannot. Our findings expand the use of MOWHTO and provide a theoretical direction for practical decisions in patients with lateral meniscal injuries.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024237\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024237","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Advancements in health informatics: finite element insights into medial open-wedge high tibial osteotomy and lateral meniscal tears.
Knee medial compartment osteoarthritis is effectively treated by a medial open-wedge high tibial osteotomy (MOWHTO). The feasibility and safety of MOWHTO for mild lateral meniscal tears are unknown. This study examined the feasibility and safety of knee joint weight-bearing line ratio (WBLr) adjustment during MOWHTO with lateral meniscal injuries. We used a healthy adult male's lower extremities computed tomography scans and knee joint magnetic resonance imaging images to create a normal fine element (FE) model. Based on this model, we generated nine FE models for the MOWHTO operation (WBLr: 40-80%) and 15 models for various lateral meniscal injuries. A compressive load of 650N was applied to all cases to calculate the von Mises stress (VMS), and the intact lateral meniscus' maximal VMS at 77.5% WBLr was accepted as the corrective upper limit stress. Our experimental results show that mild lateral meniscal tears can withstand MOWHTO, while severe tears cannot. Our findings expand the use of MOWHTO and provide a theoretical direction for practical decisions in patients with lateral meniscal injuries.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).