Ana R Arizcuren, Marta Jiménez-García, Francisco J Castro-Alonso, Alejandra Consejo
{"title":"描述一种利用 AS-OCT 图像计算晶状体赤道部的新方法:非散瞳测量的准确性。","authors":"Ana R Arizcuren, Marta Jiménez-García, Francisco J Castro-Alonso, Alejandra Consejo","doi":"10.1111/opo.13353","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To establish a methodology for objectively estimating the Lens Equatorial Plane (LEP) from clinical images, comparing LEP with dilated versus non-dilated pupils.</p><p><strong>Methods: </strong>A cohort of 91 eyes from 60 patients undergoing preoperative assessments for cataract surgery was evaluated. Anterior Segment Optical Coherence Tomography (AS-OCT) images were analysed under conditions of pharmacologically induced pupil dilation versus a non-dilated pupil. Geometrical parameters, including LEP, intersection diameter (ID), lens thickness (LT), anterior and posterior lens thickness were automatically calculated by applying standard image processing techniques to clinical AS-OCT images.</p><p><strong>Results: </strong>Significant differences in lens parameters, including LEP, were observed between dilated and non-dilated conditions (all p < 0.001). A strong linear correlation was found across all geometrical variables under both conditions (r[LEP] = 0.64, r[ID] = 0.78, r[LT] = 0.99, all p < 0.001); enabling reliable correction of these differences.</p><p><strong>Conclusion: </strong>The study introduces an objective methodology for LEP calculation, emphasising the need to consider the eye's physiological state during preoperative measurements. Incorporating LEP into future intraocular lens (IOL) power calculation formulas and replacing the habitual effective lens position may potentially improve the accuracy of IOL power estimation and thus postoperative visual outcomes.</p>","PeriodicalId":19522,"journal":{"name":"Ophthalmic and Physiological Optics","volume":" ","pages":"1107-1113"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Description of a new method to calculate the equator of the crystalline lens using AS-OCT images: Accuracy in non-dilated measurements.\",\"authors\":\"Ana R Arizcuren, Marta Jiménez-García, Francisco J Castro-Alonso, Alejandra Consejo\",\"doi\":\"10.1111/opo.13353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To establish a methodology for objectively estimating the Lens Equatorial Plane (LEP) from clinical images, comparing LEP with dilated versus non-dilated pupils.</p><p><strong>Methods: </strong>A cohort of 91 eyes from 60 patients undergoing preoperative assessments for cataract surgery was evaluated. Anterior Segment Optical Coherence Tomography (AS-OCT) images were analysed under conditions of pharmacologically induced pupil dilation versus a non-dilated pupil. Geometrical parameters, including LEP, intersection diameter (ID), lens thickness (LT), anterior and posterior lens thickness were automatically calculated by applying standard image processing techniques to clinical AS-OCT images.</p><p><strong>Results: </strong>Significant differences in lens parameters, including LEP, were observed between dilated and non-dilated conditions (all p < 0.001). A strong linear correlation was found across all geometrical variables under both conditions (r[LEP] = 0.64, r[ID] = 0.78, r[LT] = 0.99, all p < 0.001); enabling reliable correction of these differences.</p><p><strong>Conclusion: </strong>The study introduces an objective methodology for LEP calculation, emphasising the need to consider the eye's physiological state during preoperative measurements. Incorporating LEP into future intraocular lens (IOL) power calculation formulas and replacing the habitual effective lens position may potentially improve the accuracy of IOL power estimation and thus postoperative visual outcomes.</p>\",\"PeriodicalId\":19522,\"journal\":{\"name\":\"Ophthalmic and Physiological Optics\",\"volume\":\" \",\"pages\":\"1107-1113\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmic and Physiological Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/opo.13353\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmic and Physiological Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/opo.13353","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Description of a new method to calculate the equator of the crystalline lens using AS-OCT images: Accuracy in non-dilated measurements.
Objective: To establish a methodology for objectively estimating the Lens Equatorial Plane (LEP) from clinical images, comparing LEP with dilated versus non-dilated pupils.
Methods: A cohort of 91 eyes from 60 patients undergoing preoperative assessments for cataract surgery was evaluated. Anterior Segment Optical Coherence Tomography (AS-OCT) images were analysed under conditions of pharmacologically induced pupil dilation versus a non-dilated pupil. Geometrical parameters, including LEP, intersection diameter (ID), lens thickness (LT), anterior and posterior lens thickness were automatically calculated by applying standard image processing techniques to clinical AS-OCT images.
Results: Significant differences in lens parameters, including LEP, were observed between dilated and non-dilated conditions (all p < 0.001). A strong linear correlation was found across all geometrical variables under both conditions (r[LEP] = 0.64, r[ID] = 0.78, r[LT] = 0.99, all p < 0.001); enabling reliable correction of these differences.
Conclusion: The study introduces an objective methodology for LEP calculation, emphasising the need to consider the eye's physiological state during preoperative measurements. Incorporating LEP into future intraocular lens (IOL) power calculation formulas and replacing the habitual effective lens position may potentially improve the accuracy of IOL power estimation and thus postoperative visual outcomes.
期刊介绍:
Ophthalmic & Physiological Optics, first published in 1925, is a leading international interdisciplinary journal that addresses basic and applied questions pertinent to contemporary research in vision science and optometry.
OPO publishes original research papers, technical notes, reviews and letters and will interest researchers, educators and clinicians concerned with the development, use and restoration of vision.