{"title":"结合动力学的维度依赖性。","authors":"Megan G Dixon, James P Keener","doi":"10.1007/s11538-024-01311-2","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of protein-protein binding, the dissociation constant is used to describe the affinity between two proteins. For protein-protein interactions, most experimentally-measured dissociation constants are measured in solution and reported in units of volume concentration. However, many protein interactions take place on membranes. These interactions have dissociation constants with units of areal concentration, rather than volume concentration. Here, we present a novel, stochastic approach to understanding the dimensional dependence of binding kinetics. Using stochastic exit time calculations, in discrete and continuous space, we derive general reaction rates for protein-protein binding in one, two, and three dimensions and demonstrate that dimensionality greatly affects binding kinetics. Further, we present a formula to transform three-dimensional experimentally-measured dissociation constants to two-dimensional dissociation constants. This conversion can be used to mathematically model binding events that occur on membranes.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 8","pages":"87"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional Dependence of Binding Kinetics.\",\"authors\":\"Megan G Dixon, James P Keener\",\"doi\":\"10.1007/s11538-024-01311-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the context of protein-protein binding, the dissociation constant is used to describe the affinity between two proteins. For protein-protein interactions, most experimentally-measured dissociation constants are measured in solution and reported in units of volume concentration. However, many protein interactions take place on membranes. These interactions have dissociation constants with units of areal concentration, rather than volume concentration. Here, we present a novel, stochastic approach to understanding the dimensional dependence of binding kinetics. Using stochastic exit time calculations, in discrete and continuous space, we derive general reaction rates for protein-protein binding in one, two, and three dimensions and demonstrate that dimensionality greatly affects binding kinetics. Further, we present a formula to transform three-dimensional experimentally-measured dissociation constants to two-dimensional dissociation constants. This conversion can be used to mathematically model binding events that occur on membranes.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"86 8\",\"pages\":\"87\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01311-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01311-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
In the context of protein-protein binding, the dissociation constant is used to describe the affinity between two proteins. For protein-protein interactions, most experimentally-measured dissociation constants are measured in solution and reported in units of volume concentration. However, many protein interactions take place on membranes. These interactions have dissociation constants with units of areal concentration, rather than volume concentration. Here, we present a novel, stochastic approach to understanding the dimensional dependence of binding kinetics. Using stochastic exit time calculations, in discrete and continuous space, we derive general reaction rates for protein-protein binding in one, two, and three dimensions and demonstrate that dimensionality greatly affects binding kinetics. Further, we present a formula to transform three-dimensional experimentally-measured dissociation constants to two-dimensional dissociation constants. This conversion can be used to mathematically model binding events that occur on membranes.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.