Diego M. de Souza, Lívia de B. Salum, Robiedson R. Damasceno, Pedro J. de Moura Messias, Camila M. Silva, João V. de S. Cardoso, Pedro A. de O. Morais
{"title":"推进水凝胶中乙醇含量的测定:用于卫生和刑事检查的非破坏性操作方法。","authors":"Diego M. de Souza, Lívia de B. Salum, Robiedson R. Damasceno, Pedro J. de Moura Messias, Camila M. Silva, João V. de S. Cardoso, Pedro A. de O. Morais","doi":"10.1007/s44211-024-00617-4","DOIUrl":null,"url":null,"abstract":"<div><p>The significance of accurate determination of ethanol content in hydrogel formulations was accentuated during COVID-19 pandemic coinciding with the heightened demand for sanitizing agents. The present article proposes three robust methodologies for this purpose: Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, and Densitometry with matrix effect correction by Near-Infrared Spectroscopy (NIR). All three methods demonstrated outstanding linearity (<i>R</i><sup>2</sup> ≥ 0.99) and minimal errors (< 1.7%), offering simplicity and operational efficiency. FTIR and Raman, being non-destructive and requiring minimal preparation, enable practical on-site analysis capabilities, underscoring the potential of the spectroscopic methods to expedite health investigations and inspections, empowering on-site ethanol determination, and relieving the burden on official laboratories. Additionally, the densitometry with NIR-based approach showcased superior accuracy and precision compared to spectroscopic methods, meeting validation criteria while offering operational advantages over the costly official distillation-based method. Therefore, it stands as a reliable and reproducible technique for comprehensive health and criminal compliance assessments, making it a compelling alternative for both industry and official laboratories.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1833 - 1841"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing ethanol content determination in hydrogels: non-destructive and operational methods for health and criminal inspections\",\"authors\":\"Diego M. de Souza, Lívia de B. Salum, Robiedson R. Damasceno, Pedro J. de Moura Messias, Camila M. Silva, João V. de S. Cardoso, Pedro A. de O. Morais\",\"doi\":\"10.1007/s44211-024-00617-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The significance of accurate determination of ethanol content in hydrogel formulations was accentuated during COVID-19 pandemic coinciding with the heightened demand for sanitizing agents. The present article proposes three robust methodologies for this purpose: Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, and Densitometry with matrix effect correction by Near-Infrared Spectroscopy (NIR). All three methods demonstrated outstanding linearity (<i>R</i><sup>2</sup> ≥ 0.99) and minimal errors (< 1.7%), offering simplicity and operational efficiency. FTIR and Raman, being non-destructive and requiring minimal preparation, enable practical on-site analysis capabilities, underscoring the potential of the spectroscopic methods to expedite health investigations and inspections, empowering on-site ethanol determination, and relieving the burden on official laboratories. Additionally, the densitometry with NIR-based approach showcased superior accuracy and precision compared to spectroscopic methods, meeting validation criteria while offering operational advantages over the costly official distillation-based method. Therefore, it stands as a reliable and reproducible technique for comprehensive health and criminal compliance assessments, making it a compelling alternative for both industry and official laboratories.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7802,\"journal\":{\"name\":\"Analytical Sciences\",\"volume\":\"40 10\",\"pages\":\"1833 - 1841\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44211-024-00617-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s44211-024-00617-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advancing ethanol content determination in hydrogels: non-destructive and operational methods for health and criminal inspections
The significance of accurate determination of ethanol content in hydrogel formulations was accentuated during COVID-19 pandemic coinciding with the heightened demand for sanitizing agents. The present article proposes three robust methodologies for this purpose: Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, and Densitometry with matrix effect correction by Near-Infrared Spectroscopy (NIR). All three methods demonstrated outstanding linearity (R2 ≥ 0.99) and minimal errors (< 1.7%), offering simplicity and operational efficiency. FTIR and Raman, being non-destructive and requiring minimal preparation, enable practical on-site analysis capabilities, underscoring the potential of the spectroscopic methods to expedite health investigations and inspections, empowering on-site ethanol determination, and relieving the burden on official laboratories. Additionally, the densitometry with NIR-based approach showcased superior accuracy and precision compared to spectroscopic methods, meeting validation criteria while offering operational advantages over the costly official distillation-based method. Therefore, it stands as a reliable and reproducible technique for comprehensive health and criminal compliance assessments, making it a compelling alternative for both industry and official laboratories.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.