{"title":"水介质中 N-取代马来酰亚胺与硫醇的电化学促进硫代迈克尔加成反应。","authors":"Run Wu , Haojian Xu , Haiping Zhou , Pingbing Yu , Zhaoyue Wen , Wei Chen","doi":"10.1039/d4ob00734d","DOIUrl":null,"url":null,"abstract":"<div><p>A stable and practical electrochemical method was developed to promote the thio-Michael addition of <em>N</em>-substituted maleimides to various thiols in an aqueous medium. This protocol was found to be excellent in terms of facile scale-up, oxidant- and catalyst-free conditions, broad substrate scopes, good functional group tolerance, and easily available substrates. Notably, a plausible reaction mechanism was derived from the results of a series of control experiments and CV studies, which indicated that a radical pathway might speed up the thio-Michael addition under constant current.</p></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":"22 26","pages":"Pages 5401-5405"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemically promoted thio-Michael addition of N-substituted maleimides to thiols in an aqueous medium†\",\"authors\":\"Run Wu , Haojian Xu , Haiping Zhou , Pingbing Yu , Zhaoyue Wen , Wei Chen\",\"doi\":\"10.1039/d4ob00734d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A stable and practical electrochemical method was developed to promote the thio-Michael addition of <em>N</em>-substituted maleimides to various thiols in an aqueous medium. This protocol was found to be excellent in terms of facile scale-up, oxidant- and catalyst-free conditions, broad substrate scopes, good functional group tolerance, and easily available substrates. Notably, a plausible reaction mechanism was derived from the results of a series of control experiments and CV studies, which indicated that a radical pathway might speed up the thio-Michael addition under constant current.</p></div>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\"22 26\",\"pages\":\"Pages 5401-5405\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S147705202400541X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S147705202400541X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Electrochemically promoted thio-Michael addition of N-substituted maleimides to thiols in an aqueous medium†
A stable and practical electrochemical method was developed to promote the thio-Michael addition of N-substituted maleimides to various thiols in an aqueous medium. This protocol was found to be excellent in terms of facile scale-up, oxidant- and catalyst-free conditions, broad substrate scopes, good functional group tolerance, and easily available substrates. Notably, a plausible reaction mechanism was derived from the results of a series of control experiments and CV studies, which indicated that a radical pathway might speed up the thio-Michael addition under constant current.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.