{"title":"用于自主生产绿色甲烷的可扩展集成太阳能装置","authors":"","doi":"10.1016/j.joule.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>The solar-driven conversion of CO<sub>2</sub> into molecules with high calorific value is a major challenge to reduce the carbon footprint of industrialized countries. Many concepts are proposed, but limited action has been undertaken so far to design, integrate, and scale commercially viable technologies. Here, we report on the long-term performance of an autonomous solar-driven device that continuously converts CO<sub>2</sub> into CH<sub>4</sub> under mild conditions. It couples a biomethanation reactor to a set of integrated photoelectrochemical cells, combining silicon/perovskite tandem solar cells with proton exchange membrane electrolyzers, for the production of solar hydrogen from water. The 5.5% solar-to-fuel yield (calculated from global horizontal irradiance) achieved by the bench-scale device during 72 h of outdoor operation at JRC, Ispra, Italy, in July 2022, demonstrates that re-design and close integration of proven lab-scale concepts can overcome the technological barriers to the industrial deployment of artificial photosynthesis process.</p></div>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S254243512400240X/pdfft?md5=40808ef9b23e8952a0bd3b8ce164cd2f&pid=1-s2.0-S254243512400240X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A scalable integrated solar device for the autonomous production of green methane\",\"authors\":\"\",\"doi\":\"10.1016/j.joule.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solar-driven conversion of CO<sub>2</sub> into molecules with high calorific value is a major challenge to reduce the carbon footprint of industrialized countries. Many concepts are proposed, but limited action has been undertaken so far to design, integrate, and scale commercially viable technologies. Here, we report on the long-term performance of an autonomous solar-driven device that continuously converts CO<sub>2</sub> into CH<sub>4</sub> under mild conditions. It couples a biomethanation reactor to a set of integrated photoelectrochemical cells, combining silicon/perovskite tandem solar cells with proton exchange membrane electrolyzers, for the production of solar hydrogen from water. The 5.5% solar-to-fuel yield (calculated from global horizontal irradiance) achieved by the bench-scale device during 72 h of outdoor operation at JRC, Ispra, Italy, in July 2022, demonstrates that re-design and close integration of proven lab-scale concepts can overcome the technological barriers to the industrial deployment of artificial photosynthesis process.</p></div>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S254243512400240X/pdfft?md5=40808ef9b23e8952a0bd3b8ce164cd2f&pid=1-s2.0-S254243512400240X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S254243512400240X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254243512400240X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
A scalable integrated solar device for the autonomous production of green methane
The solar-driven conversion of CO2 into molecules with high calorific value is a major challenge to reduce the carbon footprint of industrialized countries. Many concepts are proposed, but limited action has been undertaken so far to design, integrate, and scale commercially viable technologies. Here, we report on the long-term performance of an autonomous solar-driven device that continuously converts CO2 into CH4 under mild conditions. It couples a biomethanation reactor to a set of integrated photoelectrochemical cells, combining silicon/perovskite tandem solar cells with proton exchange membrane electrolyzers, for the production of solar hydrogen from water. The 5.5% solar-to-fuel yield (calculated from global horizontal irradiance) achieved by the bench-scale device during 72 h of outdoor operation at JRC, Ispra, Italy, in July 2022, demonstrates that re-design and close integration of proven lab-scale concepts can overcome the technological barriers to the industrial deployment of artificial photosynthesis process.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.