用于自主生产绿色甲烷的可扩展集成太阳能装置

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-08-21 DOI:10.1016/j.joule.2024.05.012
{"title":"用于自主生产绿色甲烷的可扩展集成太阳能装置","authors":"","doi":"10.1016/j.joule.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>The solar-driven conversion of CO<sub>2</sub> into molecules with high calorific value is a major challenge to reduce the carbon footprint of industrialized countries. Many concepts are proposed, but limited action has been undertaken so far to design, integrate, and scale commercially viable technologies. Here, we report on the long-term performance of an autonomous solar-driven device that continuously converts CO<sub>2</sub> into CH<sub>4</sub> under mild conditions. It couples a biomethanation reactor to a set of integrated photoelectrochemical cells, combining silicon/perovskite tandem solar cells with proton exchange membrane electrolyzers, for the production of solar hydrogen from water. The 5.5% solar-to-fuel yield (calculated from global horizontal irradiance) achieved by the bench-scale device during 72 h of outdoor operation at JRC, Ispra, Italy, in July 2022, demonstrates that re-design and close integration of proven lab-scale concepts can overcome the technological barriers to the industrial deployment of artificial photosynthesis process.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S254243512400240X/pdfft?md5=40808ef9b23e8952a0bd3b8ce164cd2f&pid=1-s2.0-S254243512400240X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A scalable integrated solar device for the autonomous production of green methane\",\"authors\":\"\",\"doi\":\"10.1016/j.joule.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solar-driven conversion of CO<sub>2</sub> into molecules with high calorific value is a major challenge to reduce the carbon footprint of industrialized countries. Many concepts are proposed, but limited action has been undertaken so far to design, integrate, and scale commercially viable technologies. Here, we report on the long-term performance of an autonomous solar-driven device that continuously converts CO<sub>2</sub> into CH<sub>4</sub> under mild conditions. It couples a biomethanation reactor to a set of integrated photoelectrochemical cells, combining silicon/perovskite tandem solar cells with proton exchange membrane electrolyzers, for the production of solar hydrogen from water. The 5.5% solar-to-fuel yield (calculated from global horizontal irradiance) achieved by the bench-scale device during 72 h of outdoor operation at JRC, Ispra, Italy, in July 2022, demonstrates that re-design and close integration of proven lab-scale concepts can overcome the technological barriers to the industrial deployment of artificial photosynthesis process.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S254243512400240X/pdfft?md5=40808ef9b23e8952a0bd3b8ce164cd2f&pid=1-s2.0-S254243512400240X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S254243512400240X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254243512400240X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用太阳能将二氧化碳转化为高热值分子是减少工业化国家碳足迹的一大挑战。人们提出了许多概念,但迄今为止,在设计、集成和推广商业上可行的技术方面所采取的行动十分有限。在此,我们报告了一种自主太阳能驱动装置的长期性能,该装置可在温和条件下持续将二氧化碳转化为甲烷。该装置将一个生物甲烷化反应器与一套集成光电化学电池结合在一起,将硅/过氧化物串联太阳能电池与质子交换膜电解槽结合在一起,利用太阳能从水中制氢。2022 年 7 月,在意大利伊斯普拉的 JRC 进行的 72 小时室外操作中,台式装置实现了 5.5% 的太阳能转化为燃料的产量(根据全球水平辐照度计算),这表明重新设计和紧密集成已被证实的实验室规模概念可以克服工业应用人工光合作用过程的技术障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A scalable integrated solar device for the autonomous production of green methane

A scalable integrated solar device for the autonomous production of green methane

A scalable integrated solar device for the autonomous production of green methane

The solar-driven conversion of CO2 into molecules with high calorific value is a major challenge to reduce the carbon footprint of industrialized countries. Many concepts are proposed, but limited action has been undertaken so far to design, integrate, and scale commercially viable technologies. Here, we report on the long-term performance of an autonomous solar-driven device that continuously converts CO2 into CH4 under mild conditions. It couples a biomethanation reactor to a set of integrated photoelectrochemical cells, combining silicon/perovskite tandem solar cells with proton exchange membrane electrolyzers, for the production of solar hydrogen from water. The 5.5% solar-to-fuel yield (calculated from global horizontal irradiance) achieved by the bench-scale device during 72 h of outdoor operation at JRC, Ispra, Italy, in July 2022, demonstrates that re-design and close integration of proven lab-scale concepts can overcome the technological barriers to the industrial deployment of artificial photosynthesis process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信