Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra
{"title":"三维野生斜切伽罗瓦表示的塞尔权重","authors":"Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra","doi":"10.2140/ant.2024.18.1221","DOIUrl":null,"url":null,"abstract":"<p>We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> Galois representations under a genericity condition when the field is unramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. This removes the assumption made previously that the representation be tamely ramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. We also prove a version of Breuil’s lattice conjecture and a mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> multiplicity one result for the cohomology of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math>-arithmetic manifolds. The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced previously (2023). </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"28 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serre weights for three-dimensional wildly ramified Galois representations\",\"authors\":\"Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra\",\"doi\":\"10.2140/ant.2024.18.1221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> Galois representations under a genericity condition when the field is unramified at <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>. This removes the assumption made previously that the representation be tamely ramified at <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>. We also prove a version of Breuil’s lattice conjecture and a mod <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> multiplicity one result for the cohomology of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></math>-arithmetic manifolds. The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced previously (2023). </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1221\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1221","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们提出并证明了三维模 p 伽罗瓦表示的塞雷猜想的权重部分,该猜想的条件是当场在 p 处未ramified 时的通性条件。我们还证明了布雷尔格子猜想的一个版本,以及 U(3)- 算术流形的模 p 倍性一结果。关键的投入是利用我们之前介绍的局部模型研究埃默顿-吉堆栈的几何(2023)。
Serre weights for three-dimensional wildly ramified Galois representations
We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod Galois representations under a genericity condition when the field is unramified at . This removes the assumption made previously that the representation be tamely ramified at . We also prove a version of Breuil’s lattice conjecture and a mod multiplicity one result for the cohomology of -arithmetic manifolds. The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced previously (2023).
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.