{"title":"特殊群的最大子群和奎伦维度","authors":"Kevin I. Piterman","doi":"10.2140/ant.2024.18.1375","DOIUrl":null,"url":null,"abstract":"<p>Given a finite group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> and a prime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>, let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒜</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math> be the poset of nontrivial elementary abelian <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-subgroups of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. The group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> satisfies the Quillen dimension property at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒜</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math> has nonzero homology in the maximal possible degree, which is the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-rank of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> minus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>. For example, D. Quillen showed that solvable groups with trivial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-core satisfy this property, and later, M. Aschbacher and S. D. Smith provided a list of all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-extensions of simple groups that may fail this property if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> is odd. In particular, a group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> with this property satisfies Quillen’s conjecture: <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> has trivial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-core and the poset <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒜</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math> is not contractible. </p><p> In this article, we focus on the prime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>=</mo> <mn>2</mn></math> and prove that the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-extensions of finite simple groups of exceptional Lie type in odd characteristic satisfy the Quillen dimension property, with only finitely many exceptions. We achieve these conclusions by studying maximal subgroups and usually reducing the problem to the same question in small linear groups, where we establish this property via counting arguments. As a corollary, we reduce the list of possible components in a minimal counterexample to Quillen’s conjecture at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>=</mo> <mn>2</mn></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"21 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal subgroups of exceptional groups and Quillen’s dimension\",\"authors\":\"Kevin I. Piterman\",\"doi\":\"10.2140/ant.2024.18.1375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a finite group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> and a prime <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>, let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">𝒜</mi></mrow><mrow><mspace width=\\\"-0.17em\\\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math> be the poset of nontrivial elementary abelian <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-subgroups of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>. The group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> satisfies the Quillen dimension property at <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">𝒜</mi></mrow><mrow><mspace width=\\\"-0.17em\\\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math> has nonzero homology in the maximal possible degree, which is the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-rank of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> minus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn></math>. For example, D. Quillen showed that solvable groups with trivial <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-core satisfy this property, and later, M. Aschbacher and S. D. Smith provided a list of all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-extensions of simple groups that may fail this property if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> is odd. In particular, a group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> with this property satisfies Quillen’s conjecture: <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> has trivial <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math>-core and the poset <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">𝒜</mi></mrow><mrow><mspace width=\\\"-0.17em\\\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math> is not contractible. </p><p> In this article, we focus on the prime <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>=</mo> <mn>2</mn></math> and prove that the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math>-extensions of finite simple groups of exceptional Lie type in odd characteristic satisfy the Quillen dimension property, with only finitely many exceptions. We achieve these conclusions by studying maximal subgroups and usually reducing the problem to the same question in small linear groups, where we establish this property via counting arguments. As a corollary, we reduce the list of possible components in a minimal counterexample to Quillen’s conjecture at <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>=</mo> <mn>2</mn></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1375\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1375","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果𝒜p(G)在最大可能度(即 G 的 p 级减 1)上具有非零同调,则群 G 在 p 上满足奎伦维度性质。例如,D. Quillen 证明了具有微不足道的 p 核的可解群满足这一性质,后来,M. Aschbacher 和 S. D. Smith 提供了一个简单群的所有 p 扩展的列表,如果 p 为奇数,这些扩展可能不满足这一性质。特别是,具有这一性质的群 G 满足奎伦猜想:G 具有微不足道的 p 核,且正集 𝒜p(G) 不可收缩。 在本文中,我们将重点放在素数 p= 2 上,并证明奇特征中特殊李型有限简单群的 2 次展开满足奎伦维度性质,只有有限多个例外。我们通过研究最大子群得出这些结论,并通常将问题简化为小线性群中的同一问题,在小线性群中,我们通过计数论证建立了这一性质。作为推论,我们减少了 p= 2 时奎伦猜想的最小反例中的可能成分列表。
Maximal subgroups of exceptional groups and Quillen’s dimension
Given a finite group and a prime , let be the poset of nontrivial elementary abelian -subgroups of . The group satisfies the Quillen dimension property at if has nonzero homology in the maximal possible degree, which is the -rank of minus . For example, D. Quillen showed that solvable groups with trivial -core satisfy this property, and later, M. Aschbacher and S. D. Smith provided a list of all -extensions of simple groups that may fail this property if is odd. In particular, a group with this property satisfies Quillen’s conjecture: has trivial -core and the poset is not contractible.
In this article, we focus on the prime and prove that the -extensions of finite simple groups of exceptional Lie type in odd characteristic satisfy the Quillen dimension property, with only finitely many exceptions. We achieve these conclusions by studying maximal subgroups and usually reducing the problem to the same question in small linear groups, where we establish this property via counting arguments. As a corollary, we reduce the list of possible components in a minimal counterexample to Quillen’s conjecture at .
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.