{"title":"线性回归中所有未来值和精确双侧同时容差区间的多用途校准","authors":"Yang Han, Lingjiao Wang, Wei Liu, Frank Bretz","doi":"10.1080/10618600.2024.2359507","DOIUrl":null,"url":null,"abstract":"Multiple-use calibration using regression is an important statistical tool. Confidence sets for the x-values associated with all future y-values should guarantee a key property, which can be satisf...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":"60 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple-use calibration for all future values and exact two-sided simultaneous tolerance intervals in linear regression\",\"authors\":\"Yang Han, Lingjiao Wang, Wei Liu, Frank Bretz\",\"doi\":\"10.1080/10618600.2024.2359507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple-use calibration using regression is an important statistical tool. Confidence sets for the x-values associated with all future y-values should guarantee a key property, which can be satisf...\",\"PeriodicalId\":15422,\"journal\":{\"name\":\"Journal of Computational and Graphical Statistics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Graphical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2024.2359507\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2359507","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
使用回归法进行多用途校准是一种重要的统计工具。与所有未来 y 值相关的 x 值置信度集应保证一个关键属性,该属性可以满足...
Multiple-use calibration for all future values and exact two-sided simultaneous tolerance intervals in linear regression
Multiple-use calibration using regression is an important statistical tool. Confidence sets for the x-values associated with all future y-values should guarantee a key property, which can be satisf...
期刊介绍:
The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.