{"title":"激光诱导微气泡作为活体阀门,在活体小鼠微血管中进行光流体操作","authors":"Meng Shao, Changxu Li, Chun Meng, Rui Liu, Panpan Yu, Fengya Lu, Zhensheng Zhong, Xunbin Wei, Jinhua Zhou and Min-Cheng Zhong","doi":"10.1039/D4LC00095A","DOIUrl":null,"url":null,"abstract":"<p >Optofluidic regulation of blood microflow <em>in vivo</em> represents a significant method for investigating illnesses linked to abnormal changes in blood circulation. Currently, non-invasive strategies are limited to regulation within capillaries of approximately 10 μm in diameter because the adaption to blood pressure levels in the order of several hundred pascals poses a significant challenge in larger microvessels. In this study, using laser-induced microbubble formation within microvessels of the mouse auricle, we regulate blood microflow in small vessels with diameters in the tens of micrometers. By controlling the laser power, we can control the growth and stability of microbubbles <em>in vivo</em>. This controlled approach enables the achievement of prolonged ischemia and subsequent reperfusion of blood flow, and it can also regulate the microbubbles to function as micro-pumps for reverse blood pumping. Furthermore, by controlling the microbubble, narrow microflow channels can be formed between the microbubbles and microvessels for assessing the apparent viscosity of leukocytes, which is 76.9 ± 11.8 Pa·s in the <em>in vivo</em> blood environment. The proposed design of <em>in vivo</em> microbubble valves opens new avenues for constructing real-time blood regulation and exploring cellular mechanics within living organisms.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 14","pages":" 3480-3489"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-induced microbubble as an in vivo valve for optofluidic manipulation in living Mice's microvessels†\",\"authors\":\"Meng Shao, Changxu Li, Chun Meng, Rui Liu, Panpan Yu, Fengya Lu, Zhensheng Zhong, Xunbin Wei, Jinhua Zhou and Min-Cheng Zhong\",\"doi\":\"10.1039/D4LC00095A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Optofluidic regulation of blood microflow <em>in vivo</em> represents a significant method for investigating illnesses linked to abnormal changes in blood circulation. Currently, non-invasive strategies are limited to regulation within capillaries of approximately 10 μm in diameter because the adaption to blood pressure levels in the order of several hundred pascals poses a significant challenge in larger microvessels. In this study, using laser-induced microbubble formation within microvessels of the mouse auricle, we regulate blood microflow in small vessels with diameters in the tens of micrometers. By controlling the laser power, we can control the growth and stability of microbubbles <em>in vivo</em>. This controlled approach enables the achievement of prolonged ischemia and subsequent reperfusion of blood flow, and it can also regulate the microbubbles to function as micro-pumps for reverse blood pumping. Furthermore, by controlling the microbubble, narrow microflow channels can be formed between the microbubbles and microvessels for assessing the apparent viscosity of leukocytes, which is 76.9 ± 11.8 Pa·s in the <em>in vivo</em> blood environment. The proposed design of <em>in vivo</em> microbubble valves opens new avenues for constructing real-time blood regulation and exploring cellular mechanics within living organisms.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 14\",\"pages\":\" 3480-3489\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00095a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00095a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Laser-induced microbubble as an in vivo valve for optofluidic manipulation in living Mice's microvessels†
Optofluidic regulation of blood microflow in vivo represents a significant method for investigating illnesses linked to abnormal changes in blood circulation. Currently, non-invasive strategies are limited to regulation within capillaries of approximately 10 μm in diameter because the adaption to blood pressure levels in the order of several hundred pascals poses a significant challenge in larger microvessels. In this study, using laser-induced microbubble formation within microvessels of the mouse auricle, we regulate blood microflow in small vessels with diameters in the tens of micrometers. By controlling the laser power, we can control the growth and stability of microbubbles in vivo. This controlled approach enables the achievement of prolonged ischemia and subsequent reperfusion of blood flow, and it can also regulate the microbubbles to function as micro-pumps for reverse blood pumping. Furthermore, by controlling the microbubble, narrow microflow channels can be formed between the microbubbles and microvessels for assessing the apparent viscosity of leukocytes, which is 76.9 ± 11.8 Pa·s in the in vivo blood environment. The proposed design of in vivo microbubble valves opens new avenues for constructing real-time blood regulation and exploring cellular mechanics within living organisms.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.