某些弱纹理材料屈服面的严格凸度

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chi-Sing Man , Mojia Huang
{"title":"某些弱纹理材料屈服面的严格凸度","authors":"Chi-Sing Man ,&nbsp;Mojia Huang","doi":"10.1016/j.mechmat.2024.105052","DOIUrl":null,"url":null,"abstract":"<div><p>Let Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span> be the space of traceless symmetric second-order tensors. We say that a polycrystalline elastic–plastic material is weakly-textured if its yield function <span><math><mrow><mi>f</mi><mo>:</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><mi>R</mi></mrow></math></span> is the sum of a texture-independent isotropic part <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> and an anisotropic part which is linear in the relevant texture coefficients. Let <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>≔</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> be the yield surface of the weakly-textured material in question. We present a sufficient condition (*), namely that <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> be positive definite for each <span><math><mrow><mi>S</mi><mo>∈</mo><mi>S</mi></mrow></math></span>, for a smooth yield surface <span><math><mrow><mi>S</mi></mrow></math></span> to be strictly convex in Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We apply this sufficient condition to weakly-textured materials with yield functions that satisfy the following conditions: (i) the yield functions <span><math><mi>f</mi></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> are smooth; (ii) <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> is positive definite for each <span><math><mi>S</mi></math></span> in <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mo>≔</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>. We prove that the yield surface <span><math><mrow><mi>S</mi><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> of such weakly-textured material is strictly convex if the texture coefficients in <span><math><mi>f</mi></math></span> are sufficiently small. As illustration for practical applications, by appealing to condition (*) we study the strict convexity of the yield surface pertaining to a weakly-textured orthorhombic aggregate of cubic crystallites which has a quadratic yield function of the type proposed by Hill in 1948. Moreover, we show that all 35 samples of cold-rolled and annealed low-carbon steel sheets studied by Stickels and Mould have their quadratic yield functions and corresponding yield surfaces strictly convex.</p></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strict convexity of yield surfaces of some weakly-textured materials\",\"authors\":\"Chi-Sing Man ,&nbsp;Mojia Huang\",\"doi\":\"10.1016/j.mechmat.2024.105052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span> be the space of traceless symmetric second-order tensors. We say that a polycrystalline elastic–plastic material is weakly-textured if its yield function <span><math><mrow><mi>f</mi><mo>:</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><mi>R</mi></mrow></math></span> is the sum of a texture-independent isotropic part <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> and an anisotropic part which is linear in the relevant texture coefficients. Let <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>≔</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> be the yield surface of the weakly-textured material in question. We present a sufficient condition (*), namely that <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> be positive definite for each <span><math><mrow><mi>S</mi><mo>∈</mo><mi>S</mi></mrow></math></span>, for a smooth yield surface <span><math><mrow><mi>S</mi></mrow></math></span> to be strictly convex in Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We apply this sufficient condition to weakly-textured materials with yield functions that satisfy the following conditions: (i) the yield functions <span><math><mi>f</mi></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> are smooth; (ii) <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> is positive definite for each <span><math><mi>S</mi></math></span> in <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mo>≔</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>. We prove that the yield surface <span><math><mrow><mi>S</mi><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> of such weakly-textured material is strictly convex if the texture coefficients in <span><math><mi>f</mi></math></span> are sufficiently small. As illustration for practical applications, by appealing to condition (*) we study the strict convexity of the yield surface pertaining to a weakly-textured orthorhombic aggregate of cubic crystallites which has a quadratic yield function of the type proposed by Hill in 1948. Moreover, we show that all 35 samples of cold-rolled and annealed low-carbon steel sheets studied by Stickels and Mould have their quadratic yield functions and corresponding yield surfaces strictly convex.</p></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663624001443\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624001443","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

假设 Sym0 是无迹对称二阶张量空间。如果多晶弹塑性材料的屈服函数 f:Sym0→R 是与质地无关的各向同性部分 fiso 和与相关质地系数成线性关系的各向异性部分之和,则我们称这种材料为弱质地材料。假设 c>0 和 S≔f-1(c)⊂Sym0 是弱纹理材料的屈服面。我们提出了一个充分条件 (*),即∇2f(S) 对于每个 S∈S 都是正定的,这样光滑屈服面 S 在 Sym0 中才是严格凸的。我们将这一充分条件应用于屈服函数满足以下条件的弱质地材料:(i) 屈服函数 f 和 fiso 平滑;(ii) 对于 Siso≔fiso-1(c)⊂Sym0 中的每个 S,∇2fiso(S) 为正定值。我们证明,如果 f 中的纹理系数足够小,这种弱纹理材料的屈服面 S⊂Sym0 是严格凸的。为了说明实际应用,我们利用条件 (*) 研究了与立方晶体的弱质地正交集合体有关的屈服面的严格凸性,该集合体具有希尔在 1948 年提出的二次屈服函数类型。此外,我们还证明了 Stickels 和 Mould 研究的所有 35 种冷轧和退火低碳钢板样品的二次屈服函数和相应的屈服面都具有严格的凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strict convexity of yield surfaces of some weakly-textured materials

Let Sym0 be the space of traceless symmetric second-order tensors. We say that a polycrystalline elastic–plastic material is weakly-textured if its yield function f:Sym0R is the sum of a texture-independent isotropic part fiso and an anisotropic part which is linear in the relevant texture coefficients. Let c>0 and Sf1(c)Sym0 be the yield surface of the weakly-textured material in question. We present a sufficient condition (*), namely that 2f(S) be positive definite for each SS, for a smooth yield surface S to be strictly convex in Sym0. We apply this sufficient condition to weakly-textured materials with yield functions that satisfy the following conditions: (i) the yield functions f and fiso are smooth; (ii) 2fiso(S) is positive definite for each S in Sisofiso1(c)Sym0. We prove that the yield surface SSym0 of such weakly-textured material is strictly convex if the texture coefficients in f are sufficiently small. As illustration for practical applications, by appealing to condition (*) we study the strict convexity of the yield surface pertaining to a weakly-textured orthorhombic aggregate of cubic crystallites which has a quadratic yield function of the type proposed by Hill in 1948. Moreover, we show that all 35 samples of cold-rolled and annealed low-carbon steel sheets studied by Stickels and Mould have their quadratic yield functions and corresponding yield surfaces strictly convex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信