Lei Zhang , Yang Miao , Jun Jiao , Shaoxiong Feng , Yiwen Wang
{"title":"流动环境中波状生物仿生梁的流体力学行为和路由问题","authors":"Lei Zhang , Yang Miao , Jun Jiao , Shaoxiong Feng , Yiwen Wang","doi":"10.1016/j.compfluid.2024.106338","DOIUrl":null,"url":null,"abstract":"<div><p>Undulated biomimetic propulsion has gained an extensive attention with upsurge of bionic applications. However, its performance in different flow environments is rarely discussed. In this paper, hydrodynamic behavior of an undulated beam in flow environments is studied, as well as its routing problem. The previously proposed loosely coupled partitioned algorithm is adopted. Motion of an undulated beam in still water is simulated to validate this algorithm. And then, hydrodynamic behavior of beam in flow environments with different directions and velocities is studied. It is found that velocity of beam is linearly affected by longitudinal flow and symmetric vortex structure still keeps. While transverse flow leads to the unequal amplitudes of velocity valley and crest, and symmetric vortex structure is lost. The influence of oblique flow could be regard as the combination of longitudinal and transverse flow components. Flow details are analyzed to reveal the mechanism of those hydrodynamic changes. Transverse flow component plays an important role. It significantly changes the pressure difference around beam and promotes the mixture of vortex. Besides, performance of beam in different flows and routing problem indicate that the straight path between the beginning and ending points is not always the best choice.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"279 ","pages":"Article 106338"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic behavior and routing problem of an undulated biomimetic beam in flow environments\",\"authors\":\"Lei Zhang , Yang Miao , Jun Jiao , Shaoxiong Feng , Yiwen Wang\",\"doi\":\"10.1016/j.compfluid.2024.106338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Undulated biomimetic propulsion has gained an extensive attention with upsurge of bionic applications. However, its performance in different flow environments is rarely discussed. In this paper, hydrodynamic behavior of an undulated beam in flow environments is studied, as well as its routing problem. The previously proposed loosely coupled partitioned algorithm is adopted. Motion of an undulated beam in still water is simulated to validate this algorithm. And then, hydrodynamic behavior of beam in flow environments with different directions and velocities is studied. It is found that velocity of beam is linearly affected by longitudinal flow and symmetric vortex structure still keeps. While transverse flow leads to the unequal amplitudes of velocity valley and crest, and symmetric vortex structure is lost. The influence of oblique flow could be regard as the combination of longitudinal and transverse flow components. Flow details are analyzed to reveal the mechanism of those hydrodynamic changes. Transverse flow component plays an important role. It significantly changes the pressure difference around beam and promotes the mixture of vortex. Besides, performance of beam in different flows and routing problem indicate that the straight path between the beginning and ending points is not always the best choice.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"279 \",\"pages\":\"Article 106338\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001701\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001701","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hydrodynamic behavior and routing problem of an undulated biomimetic beam in flow environments
Undulated biomimetic propulsion has gained an extensive attention with upsurge of bionic applications. However, its performance in different flow environments is rarely discussed. In this paper, hydrodynamic behavior of an undulated beam in flow environments is studied, as well as its routing problem. The previously proposed loosely coupled partitioned algorithm is adopted. Motion of an undulated beam in still water is simulated to validate this algorithm. And then, hydrodynamic behavior of beam in flow environments with different directions and velocities is studied. It is found that velocity of beam is linearly affected by longitudinal flow and symmetric vortex structure still keeps. While transverse flow leads to the unequal amplitudes of velocity valley and crest, and symmetric vortex structure is lost. The influence of oblique flow could be regard as the combination of longitudinal and transverse flow components. Flow details are analyzed to reveal the mechanism of those hydrodynamic changes. Transverse flow component plays an important role. It significantly changes the pressure difference around beam and promotes the mixture of vortex. Besides, performance of beam in different flows and routing problem indicate that the straight path between the beginning and ending points is not always the best choice.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.