流动环境中波状生物仿生梁的流体力学行为和路由问题

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lei Zhang , Yang Miao , Jun Jiao , Shaoxiong Feng , Yiwen Wang
{"title":"流动环境中波状生物仿生梁的流体力学行为和路由问题","authors":"Lei Zhang ,&nbsp;Yang Miao ,&nbsp;Jun Jiao ,&nbsp;Shaoxiong Feng ,&nbsp;Yiwen Wang","doi":"10.1016/j.compfluid.2024.106338","DOIUrl":null,"url":null,"abstract":"<div><p>Undulated biomimetic propulsion has gained an extensive attention with upsurge of bionic applications. However, its performance in different flow environments is rarely discussed. In this paper, hydrodynamic behavior of an undulated beam in flow environments is studied, as well as its routing problem. The previously proposed loosely coupled partitioned algorithm is adopted. Motion of an undulated beam in still water is simulated to validate this algorithm. And then, hydrodynamic behavior of beam in flow environments with different directions and velocities is studied. It is found that velocity of beam is linearly affected by longitudinal flow and symmetric vortex structure still keeps. While transverse flow leads to the unequal amplitudes of velocity valley and crest, and symmetric vortex structure is lost. The influence of oblique flow could be regard as the combination of longitudinal and transverse flow components. Flow details are analyzed to reveal the mechanism of those hydrodynamic changes. Transverse flow component plays an important role. It significantly changes the pressure difference around beam and promotes the mixture of vortex. Besides, performance of beam in different flows and routing problem indicate that the straight path between the beginning and ending points is not always the best choice.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"279 ","pages":"Article 106338"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic behavior and routing problem of an undulated biomimetic beam in flow environments\",\"authors\":\"Lei Zhang ,&nbsp;Yang Miao ,&nbsp;Jun Jiao ,&nbsp;Shaoxiong Feng ,&nbsp;Yiwen Wang\",\"doi\":\"10.1016/j.compfluid.2024.106338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Undulated biomimetic propulsion has gained an extensive attention with upsurge of bionic applications. However, its performance in different flow environments is rarely discussed. In this paper, hydrodynamic behavior of an undulated beam in flow environments is studied, as well as its routing problem. The previously proposed loosely coupled partitioned algorithm is adopted. Motion of an undulated beam in still water is simulated to validate this algorithm. And then, hydrodynamic behavior of beam in flow environments with different directions and velocities is studied. It is found that velocity of beam is linearly affected by longitudinal flow and symmetric vortex structure still keeps. While transverse flow leads to the unequal amplitudes of velocity valley and crest, and symmetric vortex structure is lost. The influence of oblique flow could be regard as the combination of longitudinal and transverse flow components. Flow details are analyzed to reveal the mechanism of those hydrodynamic changes. Transverse flow component plays an important role. It significantly changes the pressure difference around beam and promotes the mixture of vortex. Besides, performance of beam in different flows and routing problem indicate that the straight path between the beginning and ending points is not always the best choice.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"279 \",\"pages\":\"Article 106338\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001701\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001701","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着仿生学应用的激增,不规则的仿生推进技术受到了广泛关注。然而,人们很少讨论它在不同流动环境中的性能。本文研究了波状梁在流动环境中的流体力学行为及其路由问题。本文采用了之前提出的松耦合分区算法。通过模拟静水中起伏梁的运动来验证该算法。然后,研究了横梁在不同方向和速度的流动环境中的水动力行为。研究发现,横梁的速度受纵向流的影响呈线性,且仍保持对称的涡旋结构。而横向流动会导致速度谷和速度峰的振幅不等,对称涡旋结构消失。斜流的影响可视为纵向流和横向流成分的组合。对流动细节的分析揭示了这些水动力变化的机理。横向流动成分起着重要作用。它极大地改变了横梁周围的压力差,并促进了涡流的混合。此外,横梁在不同流动和路由问题中的表现表明,起点和终点之间的直线路径并不总是最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic behavior and routing problem of an undulated biomimetic beam in flow environments

Undulated biomimetic propulsion has gained an extensive attention with upsurge of bionic applications. However, its performance in different flow environments is rarely discussed. In this paper, hydrodynamic behavior of an undulated beam in flow environments is studied, as well as its routing problem. The previously proposed loosely coupled partitioned algorithm is adopted. Motion of an undulated beam in still water is simulated to validate this algorithm. And then, hydrodynamic behavior of beam in flow environments with different directions and velocities is studied. It is found that velocity of beam is linearly affected by longitudinal flow and symmetric vortex structure still keeps. While transverse flow leads to the unequal amplitudes of velocity valley and crest, and symmetric vortex structure is lost. The influence of oblique flow could be regard as the combination of longitudinal and transverse flow components. Flow details are analyzed to reveal the mechanism of those hydrodynamic changes. Transverse flow component plays an important role. It significantly changes the pressure difference around beam and promotes the mixture of vortex. Besides, performance of beam in different flows and routing problem indicate that the straight path between the beginning and ending points is not always the best choice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信