关于嵌套球形设计的存在和估计

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Ruigang Zheng, Xiaosheng Zhuang
{"title":"关于嵌套球形设计的存在和估计","authors":"Ruigang Zheng,&nbsp;Xiaosheng Zhuang","doi":"10.1016/j.acha.2024.101672","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the existence of a spherical <em>t</em>-design formed by adding extra points to an arbitrarily given point set on the sphere and, subsequently, deduce the existence of nested spherical designs. Estimates on the number of required points are also given. For the case that the given point set is a spherical <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-design such that <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>t</mi></math></span> and the number of points is of optimal order <span><math><msubsup><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, we show that the upper bound of the total number of extra points and given points for forming nested spherical <em>t</em>-design is of order <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. A brief discussion concerning the optimal order in nested spherical designs is also given.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101672"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and estimates of nested spherical designs\",\"authors\":\"Ruigang Zheng,&nbsp;Xiaosheng Zhuang\",\"doi\":\"10.1016/j.acha.2024.101672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove the existence of a spherical <em>t</em>-design formed by adding extra points to an arbitrarily given point set on the sphere and, subsequently, deduce the existence of nested spherical designs. Estimates on the number of required points are also given. For the case that the given point set is a spherical <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-design such that <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mi>t</mi></math></span> and the number of points is of optimal order <span><math><msubsup><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, we show that the upper bound of the total number of extra points and given points for forming nested spherical <em>t</em>-design is of order <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. A brief discussion concerning the optimal order in nested spherical designs is also given.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101672\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000496\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了通过在球面上任意给定的点集中添加额外点而形成的球面 t 设计的存在性,并随后推导出嵌套球面设计的存在性。此外,还给出了所需点数的估计值。对于给定点集是球面 t1 设计,且 t1<t 和点数为最优阶 t1d 的情况,我们证明了形成嵌套球面 t 设计的额外点和给定点总数的上限为 t2d+1 阶。我们还简要讨论了嵌套球形设计的最优阶次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence and estimates of nested spherical designs

In this paper, we prove the existence of a spherical t-design formed by adding extra points to an arbitrarily given point set on the sphere and, subsequently, deduce the existence of nested spherical designs. Estimates on the number of required points are also given. For the case that the given point set is a spherical t1-design such that t1<t and the number of points is of optimal order t1d, we show that the upper bound of the total number of extra points and given points for forming nested spherical t-design is of order t2d+1. A brief discussion concerning the optimal order in nested spherical designs is also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信