同调扭转理论

Pub Date : 2024-05-31 DOI:10.1016/j.jpaa.2024.107742
Sandra Mantovani , Mariano Messora , Enrico M. Vitale
{"title":"同调扭转理论","authors":"Sandra Mantovani ,&nbsp;Mariano Messora ,&nbsp;Enrico M. Vitale","doi":"10.1016/j.jpaa.2024.107742","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of categories equipped with a structure of nullhomotopies, we introduce the notion of homotopy torsion theory. As special cases, we recover pretorsion theories as well as torsion theories in multi-pointed categories and in pre-pointed categories. Using the structure of nullhomotopies induced by the canonical string of adjunctions between a category <span><math><mi>A</mi></math></span> and the category <span><math><mrow><mi>Arr</mi></mrow><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of arrows, we give a new proof of the correspondence between orthogonal factorization systems in <span><math><mi>A</mi></math></span> and homotopy torsion theories in <span><math><mrow><mi>Arr</mi></mrow><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, avoiding the request on the existence of pullbacks and pushouts in <span><math><mi>A</mi></math></span>. Moreover, such a correspondence is extended to weakly orthogonal factorization systems and weak homotopy torsion theories.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy torsion theories\",\"authors\":\"Sandra Mantovani ,&nbsp;Mariano Messora ,&nbsp;Enrico M. Vitale\",\"doi\":\"10.1016/j.jpaa.2024.107742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of categories equipped with a structure of nullhomotopies, we introduce the notion of homotopy torsion theory. As special cases, we recover pretorsion theories as well as torsion theories in multi-pointed categories and in pre-pointed categories. Using the structure of nullhomotopies induced by the canonical string of adjunctions between a category <span><math><mi>A</mi></math></span> and the category <span><math><mrow><mi>Arr</mi></mrow><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of arrows, we give a new proof of the correspondence between orthogonal factorization systems in <span><math><mi>A</mi></math></span> and homotopy torsion theories in <span><math><mrow><mi>Arr</mi></mrow><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, avoiding the request on the existence of pullbacks and pushouts in <span><math><mi>A</mi></math></span>. Moreover, such a correspondence is extended to weakly orthogonal factorization systems and weak homotopy torsion theories.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有空同调结构的范畴中,我们引入了同调扭转理论的概念。作为特例,我们恢复了多点范畴和前点范畴中的预扭转理论以及扭转理论。利用范畴 A 和箭头范畴 Arr(A)之间的典范邻接串诱导的空同调结构,我们给出了 A 中的正交因式分解系统和 Arr(A) 中的同调扭转理论之间对应关系的新证明,避免了对 A 中存在回拉和推出的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homotopy torsion theories

In the context of categories equipped with a structure of nullhomotopies, we introduce the notion of homotopy torsion theory. As special cases, we recover pretorsion theories as well as torsion theories in multi-pointed categories and in pre-pointed categories. Using the structure of nullhomotopies induced by the canonical string of adjunctions between a category A and the category Arr(A) of arrows, we give a new proof of the correspondence between orthogonal factorization systems in A and homotopy torsion theories in Arr(A), avoiding the request on the existence of pullbacks and pushouts in A. Moreover, such a correspondence is extended to weakly orthogonal factorization systems and weak homotopy torsion theories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信