{"title":"开发出专门与双链 RNA(而非双链 DNA)结合的阳离子寡二氨基半乳糖","authors":"Hidetaka Torigoe , Sumire Nakayama , Tomomi Shiraishi , Kazuki Sato , Rintaro Iwata Hara , Takeshi Wada","doi":"10.1016/j.tca.2024.179789","DOIUrl":null,"url":null,"abstract":"<div><p>Duplex RNA stabilization is important for the application in the artificial silencing of gene expression. Excess usage of cationic molecules with low binding affinity to duplex RNA may cause cytotoxicity due to nonspecific binding. Cationic molecules specifically binding to duplex RNA with high binding affinity are necessary for duplex RNA stabilization. Here, UV melting and isothermal titration calorimetric analyses revealed that our previously designed cationic oligodiaminogalactose 4 mer (ODAGal4) specifically stabilized duplex RNA by binding to it with approximately 10<sup>5</sup> <em>M</em><sup>−1</sup> binding constant, without binding to duplex DNA. Temperature dependence of thermodynamic parameters, including negative enthalpy and entropy changes, revealed that the magnitude of negative heat capacity change was quite large for small molecules binding to duplex RNA, suggesting the influence of the hydrophobic effect on the binding process. Our results suggest the therapeutic application of ODAGal4 as a key molecule for duplex RNA-binding specificity to prevent any nonspecific binding.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of cationic oligodiaminogalactoses specifically binding to duplex RNA, but not to duplex DNA\",\"authors\":\"Hidetaka Torigoe , Sumire Nakayama , Tomomi Shiraishi , Kazuki Sato , Rintaro Iwata Hara , Takeshi Wada\",\"doi\":\"10.1016/j.tca.2024.179789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Duplex RNA stabilization is important for the application in the artificial silencing of gene expression. Excess usage of cationic molecules with low binding affinity to duplex RNA may cause cytotoxicity due to nonspecific binding. Cationic molecules specifically binding to duplex RNA with high binding affinity are necessary for duplex RNA stabilization. Here, UV melting and isothermal titration calorimetric analyses revealed that our previously designed cationic oligodiaminogalactose 4 mer (ODAGal4) specifically stabilized duplex RNA by binding to it with approximately 10<sup>5</sup> <em>M</em><sup>−1</sup> binding constant, without binding to duplex DNA. Temperature dependence of thermodynamic parameters, including negative enthalpy and entropy changes, revealed that the magnitude of negative heat capacity change was quite large for small molecules binding to duplex RNA, suggesting the influence of the hydrophobic effect on the binding process. Our results suggest the therapeutic application of ODAGal4 as a key molecule for duplex RNA-binding specificity to prevent any nonspecific binding.</p></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004060312400128X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004060312400128X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Development of cationic oligodiaminogalactoses specifically binding to duplex RNA, but not to duplex DNA
Duplex RNA stabilization is important for the application in the artificial silencing of gene expression. Excess usage of cationic molecules with low binding affinity to duplex RNA may cause cytotoxicity due to nonspecific binding. Cationic molecules specifically binding to duplex RNA with high binding affinity are necessary for duplex RNA stabilization. Here, UV melting and isothermal titration calorimetric analyses revealed that our previously designed cationic oligodiaminogalactose 4 mer (ODAGal4) specifically stabilized duplex RNA by binding to it with approximately 105M−1 binding constant, without binding to duplex DNA. Temperature dependence of thermodynamic parameters, including negative enthalpy and entropy changes, revealed that the magnitude of negative heat capacity change was quite large for small molecules binding to duplex RNA, suggesting the influence of the hydrophobic effect on the binding process. Our results suggest the therapeutic application of ODAGal4 as a key molecule for duplex RNA-binding specificity to prevent any nonspecific binding.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes