{"title":"调控网络动态参数化的晶格结构。","authors":"Tomáš Gedeon","doi":"10.1016/j.mbs.2024.109225","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two types of models of regulatory network dynamics: Boolean maps and systems of switching ordinary differential equations. Our goal is to construct all models in each category that are compatible with the directed signed graph that describe the network interactions. This leads to consideration of lattice of monotone Boolean functions (MBF), poset of non-degenerate MBFs, and a lattice of chains in these sets. We describe explicit inductive construction of these posets where the induction is on the number of inputs in MBF.</p><p>Our results allow enumeration of potential dynamic behavior of the network for both model types, subject to practical limitation imposed by the size of the lattice of MBFs described by the Dedekind number.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"374 ","pages":"Article 109225"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice structures that parameterize regulatory network dynamics\",\"authors\":\"Tomáš Gedeon\",\"doi\":\"10.1016/j.mbs.2024.109225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider two types of models of regulatory network dynamics: Boolean maps and systems of switching ordinary differential equations. Our goal is to construct all models in each category that are compatible with the directed signed graph that describe the network interactions. This leads to consideration of lattice of monotone Boolean functions (MBF), poset of non-degenerate MBFs, and a lattice of chains in these sets. We describe explicit inductive construction of these posets where the induction is on the number of inputs in MBF.</p><p>Our results allow enumeration of potential dynamic behavior of the network for both model types, subject to practical limitation imposed by the size of the lattice of MBFs described by the Dedekind number.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"374 \",\"pages\":\"Article 109225\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000853\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000853","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Lattice structures that parameterize regulatory network dynamics
We consider two types of models of regulatory network dynamics: Boolean maps and systems of switching ordinary differential equations. Our goal is to construct all models in each category that are compatible with the directed signed graph that describe the network interactions. This leads to consideration of lattice of monotone Boolean functions (MBF), poset of non-degenerate MBFs, and a lattice of chains in these sets. We describe explicit inductive construction of these posets where the induction is on the number of inputs in MBF.
Our results allow enumeration of potential dynamic behavior of the network for both model types, subject to practical limitation imposed by the size of the lattice of MBFs described by the Dedekind number.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.