导电嵌段共聚物弹性体和心理物理阈值,实现准确的触觉效果。

IF 26.1 1区 计算机科学 Q1 ROBOTICS
Rachel Blau, Abdulhameed Abdal, Nicholas Root, Alexander X. Chen, Tarek Rafeedi, Robert Ramji, Yi Qie, Taewoo Kim, Anthony Navarro, Jason Chin, Laura L. Becerra, Samuel J. Edmunds, Samantha M. Russman, Shadi A. Dayeh, David P. Fenning, Romke Rouw, Darren J. Lipomi
{"title":"导电嵌段共聚物弹性体和心理物理阈值,实现准确的触觉效果。","authors":"Rachel Blau,&nbsp;Abdulhameed Abdal,&nbsp;Nicholas Root,&nbsp;Alexander X. Chen,&nbsp;Tarek Rafeedi,&nbsp;Robert Ramji,&nbsp;Yi Qie,&nbsp;Taewoo Kim,&nbsp;Anthony Navarro,&nbsp;Jason Chin,&nbsp;Laura L. Becerra,&nbsp;Samuel J. Edmunds,&nbsp;Samantha M. Russman,&nbsp;Shadi A. Dayeh,&nbsp;David P. Fenning,&nbsp;Romke Rouw,&nbsp;Darren J. Lipomi","doi":"10.1126/scirobotics.adk3925","DOIUrl":null,"url":null,"abstract":"<div >Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive block copolymer elastomers and psychophysical thresholding for accurate haptic effects\",\"authors\":\"Rachel Blau,&nbsp;Abdulhameed Abdal,&nbsp;Nicholas Root,&nbsp;Alexander X. Chen,&nbsp;Tarek Rafeedi,&nbsp;Robert Ramji,&nbsp;Yi Qie,&nbsp;Taewoo Kim,&nbsp;Anthony Navarro,&nbsp;Jason Chin,&nbsp;Laura L. Becerra,&nbsp;Samuel J. Edmunds,&nbsp;Samantha M. Russman,&nbsp;Shadi A. Dayeh,&nbsp;David P. Fenning,&nbsp;Romke Rouw,&nbsp;Darren J. Lipomi\",\"doi\":\"10.1126/scirobotics.adk3925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"9 91\",\"pages\":\"\"},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.adk3925\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adk3925","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

电触觉刺激是一种感官替代形式,在这种形式中,电信号被感知为机械感觉。电触觉效应原则上可以通过选择性激活神经末梢来重现一系列触觉体验。然而,这种方法一直受到不一致性、电刺激反应、疼痛和脱敏以及对非触觉神经的不必要刺激等问题的困扰。在此,我们介绍了软性导电嵌段共聚物、可拉伸布局、同心电极以及心理物理阈值如何规避这些缺陷。这些专门设计的材料、设备布局和校准技术使我们能够在 10 名人类参与者中产生准确且可重复的感觉,并且在超低电流(≥6 微安培)条件下不会产生疼痛或脱敏现象。这种材料、外形和心理物理学方法可用于触觉设备,也可作为激活外周神经系统的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conductive block copolymer elastomers and psychophysical thresholding for accurate haptic effects
Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信