Yu Meng Zhou, Cameron J. Hohimer, Harrison T. Young, Connor M. McCann, David Pont-Esteban, Umut S. Civici, Yichu Jin, Patrick Murphy, Diana Wagner, Tazzy Cole, Nathan Phipps, Haedo Cho, Franchesco Bertacchi, Isabella Pignataro, Tommaso Proietti, Conor J. Walsh
{"title":"一种便携式充气软式可穿戴机器人,用于在工业工作中辅助肩部。","authors":"Yu Meng Zhou, Cameron J. Hohimer, Harrison T. Young, Connor M. McCann, David Pont-Esteban, Umut S. Civici, Yichu Jin, Patrick Murphy, Diana Wagner, Tazzy Cole, Nathan Phipps, Haedo Cho, Franchesco Bertacchi, Isabella Pignataro, Tommaso Proietti, Conor J. Walsh","doi":"10.1126/scirobotics.adi2377","DOIUrl":null,"url":null,"abstract":"<div >Repetitive overhead tasks during factory work can cause shoulder injuries resulting in impaired health and productivity loss. Soft wearable upper extremity robots have the potential to be effective injury prevention tools with minimal restrictions using soft materials and active controls. We present the design and evaluation of a portable inflatable shoulder wearable robot for assisting industrial workers during shoulder-elevated tasks. The robot is worn like a shirt with integrated textile pneumatic actuators, inertial measurement units, and a portable actuation unit. It can provide up to 6.6 newton-meters of torque to support the shoulder and cycle assistance on and off at six times per minute. From human participant evaluations during simulated industrial tasks, the robot reduced agonist muscle activities (anterior, middle, and posterior deltoids and biceps brachii) by up to 40% with slight changes in joint angles of less than 7% range of motion while not increasing antagonistic muscle activity (latissimus dorsi) in current sample size. Comparison of controller parameters further highlighted that higher assistance magnitude and earlier assistance timing resulted in statistically significant muscle activity reductions. During a task circuit with dynamic transitions among the tasks, the kinematics-based controller of the robot showed robustness to misinflations (96% true negative rate and 91% true positive rate), indicating minimal disturbances to the user when assistance was not required. A preliminary evaluation of a pressure modulation profile also highlighted a trade-off between user perception and hardware demands. Finally, five automotive factory workers used the robot in a pilot manufacturing area and provided feedback.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adi2377","citationCount":"0","resultStr":"{\"title\":\"A portable inflatable soft wearable robot to assist the shoulder during industrial work\",\"authors\":\"Yu Meng Zhou, Cameron J. Hohimer, Harrison T. Young, Connor M. McCann, David Pont-Esteban, Umut S. Civici, Yichu Jin, Patrick Murphy, Diana Wagner, Tazzy Cole, Nathan Phipps, Haedo Cho, Franchesco Bertacchi, Isabella Pignataro, Tommaso Proietti, Conor J. Walsh\",\"doi\":\"10.1126/scirobotics.adi2377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Repetitive overhead tasks during factory work can cause shoulder injuries resulting in impaired health and productivity loss. Soft wearable upper extremity robots have the potential to be effective injury prevention tools with minimal restrictions using soft materials and active controls. We present the design and evaluation of a portable inflatable shoulder wearable robot for assisting industrial workers during shoulder-elevated tasks. The robot is worn like a shirt with integrated textile pneumatic actuators, inertial measurement units, and a portable actuation unit. It can provide up to 6.6 newton-meters of torque to support the shoulder and cycle assistance on and off at six times per minute. From human participant evaluations during simulated industrial tasks, the robot reduced agonist muscle activities (anterior, middle, and posterior deltoids and biceps brachii) by up to 40% with slight changes in joint angles of less than 7% range of motion while not increasing antagonistic muscle activity (latissimus dorsi) in current sample size. Comparison of controller parameters further highlighted that higher assistance magnitude and earlier assistance timing resulted in statistically significant muscle activity reductions. During a task circuit with dynamic transitions among the tasks, the kinematics-based controller of the robot showed robustness to misinflations (96% true negative rate and 91% true positive rate), indicating minimal disturbances to the user when assistance was not required. A preliminary evaluation of a pressure modulation profile also highlighted a trade-off between user perception and hardware demands. Finally, five automotive factory workers used the robot in a pilot manufacturing area and provided feedback.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"9 91\",\"pages\":\"\"},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/scirobotics.adi2377\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.adi2377\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adi2377","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
A portable inflatable soft wearable robot to assist the shoulder during industrial work
Repetitive overhead tasks during factory work can cause shoulder injuries resulting in impaired health and productivity loss. Soft wearable upper extremity robots have the potential to be effective injury prevention tools with minimal restrictions using soft materials and active controls. We present the design and evaluation of a portable inflatable shoulder wearable robot for assisting industrial workers during shoulder-elevated tasks. The robot is worn like a shirt with integrated textile pneumatic actuators, inertial measurement units, and a portable actuation unit. It can provide up to 6.6 newton-meters of torque to support the shoulder and cycle assistance on and off at six times per minute. From human participant evaluations during simulated industrial tasks, the robot reduced agonist muscle activities (anterior, middle, and posterior deltoids and biceps brachii) by up to 40% with slight changes in joint angles of less than 7% range of motion while not increasing antagonistic muscle activity (latissimus dorsi) in current sample size. Comparison of controller parameters further highlighted that higher assistance magnitude and earlier assistance timing resulted in statistically significant muscle activity reductions. During a task circuit with dynamic transitions among the tasks, the kinematics-based controller of the robot showed robustness to misinflations (96% true negative rate and 91% true positive rate), indicating minimal disturbances to the user when assistance was not required. A preliminary evaluation of a pressure modulation profile also highlighted a trade-off between user perception and hardware demands. Finally, five automotive factory workers used the robot in a pilot manufacturing area and provided feedback.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.