{"title":"用于序数和连续纵向数据的正态-序数(probit)联合模型。","authors":"Margaux Delporte, Geert Molenberghs, Steffen Fieuws, Geert Verbeke","doi":"10.1093/biostatistics/kxae014","DOIUrl":null,"url":null,"abstract":"<p><p>In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. In many of these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-dependent covariates have, however, several limitations; they can, for example, not be included when the data is not collected at fixed intervals. The issues can be circumvented by implementing joint models, where two or more longitudinal variables are treated as a response and modeled with a correlated random effect. Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to estimate the model-based correlations between the responses on their original scale. In addition, we derive the marginal model, where the interpretation is no longer conditional on the random effects. As a consequence, we can make predictions for a subvector of one response conditional on the other response and potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional case with more than two ordinal and/or continuous longitudinal variables. The methodology is applied to a case study where, among others, a longitudinal ordinal response is predicted with a longitudinal continuous variable.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data.\",\"authors\":\"Margaux Delporte, Geert Molenberghs, Steffen Fieuws, Geert Verbeke\",\"doi\":\"10.1093/biostatistics/kxae014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. In many of these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-dependent covariates have, however, several limitations; they can, for example, not be included when the data is not collected at fixed intervals. The issues can be circumvented by implementing joint models, where two or more longitudinal variables are treated as a response and modeled with a correlated random effect. Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to estimate the model-based correlations between the responses on their original scale. In addition, we derive the marginal model, where the interpretation is no longer conditional on the random effects. As a consequence, we can make predictions for a subvector of one response conditional on the other response and potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional case with more than two ordinal and/or continuous longitudinal variables. The methodology is applied to a case study where, among others, a longitudinal ordinal response is predicted with a longitudinal continuous variable.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxae014\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data.
In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. In many of these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-dependent covariates have, however, several limitations; they can, for example, not be included when the data is not collected at fixed intervals. The issues can be circumvented by implementing joint models, where two or more longitudinal variables are treated as a response and modeled with a correlated random effect. Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to estimate the model-based correlations between the responses on their original scale. In addition, we derive the marginal model, where the interpretation is no longer conditional on the random effects. As a consequence, we can make predictions for a subvector of one response conditional on the other response and potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional case with more than two ordinal and/or continuous longitudinal variables. The methodology is applied to a case study where, among others, a longitudinal ordinal response is predicted with a longitudinal continuous variable.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.