Stephanie A Pierce, Jordan Jacobelli, Katherine S Given, Wendy B Macklin, Juliet T Gopinath, Mark E Siemens, Diego Restrepo, Emily A Gibson
{"title":"OpenSTED:用于受激发射耗尽显微镜的开源动态强度最小系统。","authors":"Stephanie A Pierce, Jordan Jacobelli, Katherine S Given, Wendy B Macklin, Juliet T Gopinath, Mark E Siemens, Diego Restrepo, Emily A Gibson","doi":"10.1117/1.NPh.11.3.034311","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Stimulated emission depletion (STED) is a powerful super-resolution microscopy technique that can be used for imaging live cells. However, the high STED laser powers can cause significant photobleaching and sample damage in sensitive biological samples. The dynamic intensity minimum (DyMIN) technique turns on the STED laser only in regions of the sample where there is fluorescence signal, thus saving significant sample photobleaching. The reduction in photobleaching allows higher resolution images to be obtained and longer time-lapse imaging of live samples. A stand-alone module to perform DyMIN is not available commercially.</p><p><strong>Aim: </strong>In this work, we developed an open-source design to implement three-step DyMIN on a STED microscope and demonstrated reduced photobleaching for timelapse imaging of beads, cells, and tissue.</p><p><strong>Approach: </strong>The DyMIN system uses a fast multiplexer circuit and inexpensive field-programmable gate array controlled by Labview software that operates as a stand-alone module for a STED microscope. All software and circuit diagrams are freely available.</p><p><strong>Results: </strong>We compared time-lapse images of bead samples using our custom DyMIN system to conventional STED and recorded a <math><mrow><mo>∼</mo> <mn>46</mn> <mo>%</mo></mrow> </math> higher signal when using DyMIN after a 50-image sequence. We further demonstrated the DyMIN system for time-lapse STED imaging of live cells and brain tissue slices.</p><p><strong>Conclusions: </strong>Our open-source DyMIN system is an inexpensive add-on to a conventional STED microscope that can reduce photobleaching. The system can significantly improve signal to noise for dynamic time-lapse STED imaging of live samples.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"034311"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167952/pdf/","citationCount":"0","resultStr":"{\"title\":\"OpenSTED: open-source dynamic intensity minimum system for stimulated emission depletion microscopy.\",\"authors\":\"Stephanie A Pierce, Jordan Jacobelli, Katherine S Given, Wendy B Macklin, Juliet T Gopinath, Mark E Siemens, Diego Restrepo, Emily A Gibson\",\"doi\":\"10.1117/1.NPh.11.3.034311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Stimulated emission depletion (STED) is a powerful super-resolution microscopy technique that can be used for imaging live cells. However, the high STED laser powers can cause significant photobleaching and sample damage in sensitive biological samples. The dynamic intensity minimum (DyMIN) technique turns on the STED laser only in regions of the sample where there is fluorescence signal, thus saving significant sample photobleaching. The reduction in photobleaching allows higher resolution images to be obtained and longer time-lapse imaging of live samples. A stand-alone module to perform DyMIN is not available commercially.</p><p><strong>Aim: </strong>In this work, we developed an open-source design to implement three-step DyMIN on a STED microscope and demonstrated reduced photobleaching for timelapse imaging of beads, cells, and tissue.</p><p><strong>Approach: </strong>The DyMIN system uses a fast multiplexer circuit and inexpensive field-programmable gate array controlled by Labview software that operates as a stand-alone module for a STED microscope. All software and circuit diagrams are freely available.</p><p><strong>Results: </strong>We compared time-lapse images of bead samples using our custom DyMIN system to conventional STED and recorded a <math><mrow><mo>∼</mo> <mn>46</mn> <mo>%</mo></mrow> </math> higher signal when using DyMIN after a 50-image sequence. We further demonstrated the DyMIN system for time-lapse STED imaging of live cells and brain tissue slices.</p><p><strong>Conclusions: </strong>Our open-source DyMIN system is an inexpensive add-on to a conventional STED microscope that can reduce photobleaching. The system can significantly improve signal to noise for dynamic time-lapse STED imaging of live samples.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 3\",\"pages\":\"034311\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.3.034311\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.3.034311","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
意义重大:受激发射耗尽(STED)是一种强大的超分辨率显微技术,可用于活细胞成像。然而,高功率的 STED 激光会对敏感的生物样本造成严重的光漂白和样本损伤。动态强度最小化(DyMIN)技术只在有荧光信号的样品区域开启 STED 激光,从而避免了严重的样品光漂白。由于减少了光漂白,因此可以获得更高分辨率的图像,并对活体样本进行更长时间的延时成像。目的:在这项工作中,我们开发了一种开源设计,在 STED 显微镜上实现了三步 DyMIN,并演示了在珠子、细胞和组织的延时成像中减少光漂白的方法:DyMIN 系统使用快速多路复用器电路和廉价的现场可编程门阵列,由 Labview 软件控制,可作为 STED 显微镜的独立模块运行。所有软件和电路图均免费提供:我们比较了使用定制的 DyMIN 系统和传统 STED 对珠子样品拍摄的延时图像,在拍摄 50 幅图像序列后,使用 DyMIN 系统拍摄的信号高出 46%。我们进一步展示了用于活细胞和脑组织切片延时 STED 成像的 DyMIN 系统:我们的开源 DyMIN 系统是传统 STED 显微镜的廉价插件,可减少光漂白。该系统可显著改善活体样本动态延时 STED 成像的信噪比。
OpenSTED: open-source dynamic intensity minimum system for stimulated emission depletion microscopy.
Significance: Stimulated emission depletion (STED) is a powerful super-resolution microscopy technique that can be used for imaging live cells. However, the high STED laser powers can cause significant photobleaching and sample damage in sensitive biological samples. The dynamic intensity minimum (DyMIN) technique turns on the STED laser only in regions of the sample where there is fluorescence signal, thus saving significant sample photobleaching. The reduction in photobleaching allows higher resolution images to be obtained and longer time-lapse imaging of live samples. A stand-alone module to perform DyMIN is not available commercially.
Aim: In this work, we developed an open-source design to implement three-step DyMIN on a STED microscope and demonstrated reduced photobleaching for timelapse imaging of beads, cells, and tissue.
Approach: The DyMIN system uses a fast multiplexer circuit and inexpensive field-programmable gate array controlled by Labview software that operates as a stand-alone module for a STED microscope. All software and circuit diagrams are freely available.
Results: We compared time-lapse images of bead samples using our custom DyMIN system to conventional STED and recorded a higher signal when using DyMIN after a 50-image sequence. We further demonstrated the DyMIN system for time-lapse STED imaging of live cells and brain tissue slices.
Conclusions: Our open-source DyMIN system is an inexpensive add-on to a conventional STED microscope that can reduce photobleaching. The system can significantly improve signal to noise for dynamic time-lapse STED imaging of live samples.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.