{"title":"用于肺癌检测的优化卷积神经网络架构","authors":"Sameena Pathan, Tanweer Ali, Sudheesh P G, Vasanth Kumar P, Divya Rao","doi":"10.1063/5.0208520","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer, the treacherous malignancy affecting the respiratory system of a human body, has a devastating impact on the health and well-being of an individual. Due to the lack of automated and noninvasive diagnostic tools, healthcare professionals look forward toward biopsy as a gold standard for diagnosis. However, biopsy could be traumatizing and expensive process. Additionally, the limited availability of dataset and inaccuracy in diagnosis is a major drawback experienced by researchers. The objective of the proposed research is to develop an automated diagnostic tool for screening of lung cancer using optimized hyperparameters such that convolutional neural network (CNN) model generalizes well for universally obtained computerized tomography (CT) slices of lung pathologies. The aforementioned objective is achieved in the following ways: (i) Initially, a preprocessing methodology specific to lung CT scans is formulated to avoid the loss of information due to random image smoothing, and (ii) a sine cosine algorithm optimization algorithm (SCA) is integrated in the CNN model, to optimally select the tuning parameters of CNN. The error rate is used as an objective function, and the SCA algorithm tries to minimize. The proposed method successfully achieved an average classification accuracy of 99% in classification of lung scans in normal, benign, and malignant classes. Further, the generalization ability of the proposed model is tested on unseen dataset, thereby achieving promising results. The quantitative results prove the efficacy of the system to be used by radiologists in a clinical scenario.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 2","pages":"026121"},"PeriodicalIF":6.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168751/pdf/","citationCount":"0","resultStr":"{\"title\":\"An optimized convolutional neural network architecture for lung cancer detection.\",\"authors\":\"Sameena Pathan, Tanweer Ali, Sudheesh P G, Vasanth Kumar P, Divya Rao\",\"doi\":\"10.1063/5.0208520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer, the treacherous malignancy affecting the respiratory system of a human body, has a devastating impact on the health and well-being of an individual. Due to the lack of automated and noninvasive diagnostic tools, healthcare professionals look forward toward biopsy as a gold standard for diagnosis. However, biopsy could be traumatizing and expensive process. Additionally, the limited availability of dataset and inaccuracy in diagnosis is a major drawback experienced by researchers. The objective of the proposed research is to develop an automated diagnostic tool for screening of lung cancer using optimized hyperparameters such that convolutional neural network (CNN) model generalizes well for universally obtained computerized tomography (CT) slices of lung pathologies. The aforementioned objective is achieved in the following ways: (i) Initially, a preprocessing methodology specific to lung CT scans is formulated to avoid the loss of information due to random image smoothing, and (ii) a sine cosine algorithm optimization algorithm (SCA) is integrated in the CNN model, to optimally select the tuning parameters of CNN. The error rate is used as an objective function, and the SCA algorithm tries to minimize. The proposed method successfully achieved an average classification accuracy of 99% in classification of lung scans in normal, benign, and malignant classes. Further, the generalization ability of the proposed model is tested on unseen dataset, thereby achieving promising results. The quantitative results prove the efficacy of the system to be used by radiologists in a clinical scenario.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"8 2\",\"pages\":\"026121\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0208520\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0208520","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An optimized convolutional neural network architecture for lung cancer detection.
Lung cancer, the treacherous malignancy affecting the respiratory system of a human body, has a devastating impact on the health and well-being of an individual. Due to the lack of automated and noninvasive diagnostic tools, healthcare professionals look forward toward biopsy as a gold standard for diagnosis. However, biopsy could be traumatizing and expensive process. Additionally, the limited availability of dataset and inaccuracy in diagnosis is a major drawback experienced by researchers. The objective of the proposed research is to develop an automated diagnostic tool for screening of lung cancer using optimized hyperparameters such that convolutional neural network (CNN) model generalizes well for universally obtained computerized tomography (CT) slices of lung pathologies. The aforementioned objective is achieved in the following ways: (i) Initially, a preprocessing methodology specific to lung CT scans is formulated to avoid the loss of information due to random image smoothing, and (ii) a sine cosine algorithm optimization algorithm (SCA) is integrated in the CNN model, to optimally select the tuning parameters of CNN. The error rate is used as an objective function, and the SCA algorithm tries to minimize. The proposed method successfully achieved an average classification accuracy of 99% in classification of lung scans in normal, benign, and malignant classes. Further, the generalization ability of the proposed model is tested on unseen dataset, thereby achieving promising results. The quantitative results prove the efficacy of the system to be used by radiologists in a clinical scenario.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology