Alex J Roy, Jeffrey R Leipprandt, Joseph R Patterson, Anna C Stoll, Christopher J Kemp, Zaipo-Tcheisian D Oula, Tyler Mola, Ana R Batista, Caryl E Sortwell, Miguel Sena-Esteves, Richard R Neubig
{"title":"AAV9 介导的 GNAO1 纹状体内输送可减少 Gnao1 杂合子 R209H 突变小鼠的过度运动。","authors":"Alex J Roy, Jeffrey R Leipprandt, Joseph R Patterson, Anna C Stoll, Christopher J Kemp, Zaipo-Tcheisian D Oula, Tyler Mola, Ana R Batista, Caryl E Sortwell, Miguel Sena-Esteves, Richard R Neubig","doi":"10.1124/jpet.124.002117","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the <i>GNAO1</i> gene, which encodes the abundant brain G-protein G<i>α</i> <sub>o</sub>, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with <i>GNAO1</i> disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (<i>Gnao1</i> <sup>+/R209H</sup>) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human <i>GNAO1</i> G<i>α</i> <sub>o</sub> isoforms 1 (G<sub>o</sub>A, <i>GNAO1.1</i>) and 2 (G<sub>o</sub>B, <i>GNAO1.2</i>). Bilateral intrastriatal injections of either scAAV9-<i>GNAO1.1</i> or scAAV9-<i>GNAO1.2</i> significantly reversed mutation-associated hyperactivity in open field tests. <i>GNAO1</i> overexpression did not increase seizure susceptibility, a potential side effect of <i>GNAO1</i> vector treatment. This represents the first report of successful preclinical gene therapy for <i>GNAO1</i> encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated G<i>α</i> <sub>o</sub> expression and to refine the vector design. SIGNIFICANCE STATEMENT: <i>GNAO1</i> mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-<i>GNAO1</i> to express the wild-type G<i>α</i> <sub>o</sub> protein reduces the hyperactivity of the <i>Gnao1</i> <sup>+/R209H</sup> mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for <i>GNAO1</i> encephalopathy applied in vivo on a patient-allele model.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AAV9-Mediated Intrastriatal Delivery of <i>GNAO1</i> Reduces Hyperlocomotion in <i>Gnao1</i> Heterozygous R209H Mutant Mice.\",\"authors\":\"Alex J Roy, Jeffrey R Leipprandt, Joseph R Patterson, Anna C Stoll, Christopher J Kemp, Zaipo-Tcheisian D Oula, Tyler Mola, Ana R Batista, Caryl E Sortwell, Miguel Sena-Esteves, Richard R Neubig\",\"doi\":\"10.1124/jpet.124.002117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in the <i>GNAO1</i> gene, which encodes the abundant brain G-protein G<i>α</i> <sub>o</sub>, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with <i>GNAO1</i> disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (<i>Gnao1</i> <sup>+/R209H</sup>) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human <i>GNAO1</i> G<i>α</i> <sub>o</sub> isoforms 1 (G<sub>o</sub>A, <i>GNAO1.1</i>) and 2 (G<sub>o</sub>B, <i>GNAO1.2</i>). Bilateral intrastriatal injections of either scAAV9-<i>GNAO1.1</i> or scAAV9-<i>GNAO1.2</i> significantly reversed mutation-associated hyperactivity in open field tests. <i>GNAO1</i> overexpression did not increase seizure susceptibility, a potential side effect of <i>GNAO1</i> vector treatment. This represents the first report of successful preclinical gene therapy for <i>GNAO1</i> encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated G<i>α</i> <sub>o</sub> expression and to refine the vector design. SIGNIFICANCE STATEMENT: <i>GNAO1</i> mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-<i>GNAO1</i> to express the wild-type G<i>α</i> <sub>o</sub> protein reduces the hyperactivity of the <i>Gnao1</i> <sup>+/R209H</sup> mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for <i>GNAO1</i> encephalopathy applied in vivo on a patient-allele model.</p>\",\"PeriodicalId\":16798,\"journal\":{\"name\":\"Journal of Pharmacology and Experimental Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacology and Experimental Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/jpet.124.002117\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002117","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
AAV9-Mediated Intrastriatal Delivery of GNAO1 Reduces Hyperlocomotion in Gnao1 Heterozygous R209H Mutant Mice.
Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gαo, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1+/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gαo isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gαo expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gαo protein reduces the hyperactivity of the Gnao1+/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.
期刊介绍:
A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.