肉桂皮中掺入 L-精氨酸的碳纳米点用于改进酵母细胞荧光成像。

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Fluorescence Pub Date : 2025-05-01 Epub Date: 2024-06-13 DOI:10.1007/s10895-024-03799-2
Urvi M Lad, Dhruti J Dave, Bhumi N Desai, Devesh H Suthar, Chetan K Modi
{"title":"肉桂皮中掺入 L-精氨酸的碳纳米点用于改进酵母细胞荧光成像。","authors":"Urvi M Lad, Dhruti J Dave, Bhumi N Desai, Devesh H Suthar, Chetan K Modi","doi":"10.1007/s10895-024-03799-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present an economical and efficient synthesis method for carbon nanodots (CNDs) derived from cinnamon bark wood powder, with the incorporation of L-arginine as a dopant at varying ratios (Cinnamon : L-Arginine - 1:0.25, 1:0.5) via a hydrothermal reaction. Extensive structural and optical characterization was conducted through techniques such as FTIR, XRD, HR-TEM, DLS, UV-Vis, and PL spectra, providing a comprehensive understanding of the properties of CNDs and doped-CNDs. Quantum yields (QY) were quantified for synthesized materials, contributing to the assessment of their fluorescence efficiency. The synthesized CNDs were successfully applied for bioimaging of yeast cells, employing fluorescence microscopy to visualize their interaction. Remarkably, L-arginine-doped CNDs exhibited enhanced fluorescence, showcasing the influence of the dopant. The nature of these CNDs was rigorously investigated, confirming their biocompatibility. Notably, this work presents a novel approach to synthesizing CNDs from a renewable and sustainable source, cinnamon bark wood powder, while exploring the effects of L-arginine doping on their optical and biological properties. This work not only contributes to the synthesis and characterization of CNDs but also highlights their potential for diverse applications, emphasizing their structural, optical, and biological attributes. The findings underscore the versatility of CNDs derived from cinnamon bark wood powder and their potential for advancing biotechnological and imaging applications.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"3577-3587"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L-Arginine Doped Carbon Nanodots from Cinnamon Bark for Improved Fluorescent Yeast Cell Imaging.\",\"authors\":\"Urvi M Lad, Dhruti J Dave, Bhumi N Desai, Devesh H Suthar, Chetan K Modi\",\"doi\":\"10.1007/s10895-024-03799-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we present an economical and efficient synthesis method for carbon nanodots (CNDs) derived from cinnamon bark wood powder, with the incorporation of L-arginine as a dopant at varying ratios (Cinnamon : L-Arginine - 1:0.25, 1:0.5) via a hydrothermal reaction. Extensive structural and optical characterization was conducted through techniques such as FTIR, XRD, HR-TEM, DLS, UV-Vis, and PL spectra, providing a comprehensive understanding of the properties of CNDs and doped-CNDs. Quantum yields (QY) were quantified for synthesized materials, contributing to the assessment of their fluorescence efficiency. The synthesized CNDs were successfully applied for bioimaging of yeast cells, employing fluorescence microscopy to visualize their interaction. Remarkably, L-arginine-doped CNDs exhibited enhanced fluorescence, showcasing the influence of the dopant. The nature of these CNDs was rigorously investigated, confirming their biocompatibility. Notably, this work presents a novel approach to synthesizing CNDs from a renewable and sustainable source, cinnamon bark wood powder, while exploring the effects of L-arginine doping on their optical and biological properties. This work not only contributes to the synthesis and characterization of CNDs but also highlights their potential for diverse applications, emphasizing their structural, optical, and biological attributes. The findings underscore the versatility of CNDs derived from cinnamon bark wood powder and their potential for advancing biotechnological and imaging applications.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"3577-3587\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03799-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03799-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过水热反应,以不同的比例(肉桂:L-精氨酸 - 1:0.25,1:0.5)加入 L-精氨酸作为掺杂剂,提出了一种从肉桂树皮木粉中提取碳纳米点(CNDs)的经济高效的合成方法。通过傅立叶变换红外光谱、XRD、HR-TEM、DLS、紫外-可见光谱和聚光光谱等技术进行了广泛的结构和光学表征,从而全面了解了 CND 和掺杂 CND 的特性。对合成材料的量子产率(QY)进行了量化,有助于评估其荧光效率。合成的 CND 成功应用于酵母细胞的生物成像,利用荧光显微镜观察它们之间的相互作用。值得注意的是,掺杂左旋精氨酸的 CNDs 显示出更强的荧光,显示出掺杂剂的影响。对这些 CND 的性质进行了严格研究,证实了它们的生物相容性。值得注意的是,这项工作提出了一种从可再生和可持续来源--桂皮木粉--合成 CNDs 的新方法,同时探索了 L-精氨酸掺杂对其光学和生物特性的影响。这项工作不仅有助于 CNDs 的合成和表征,还强调了它们在结构、光学和生物属性方面的不同应用潜力。研究结果强调了从桂皮木粉中提取的 CNDs 的多功能性及其在推进生物技术和成像应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

L-Arginine Doped Carbon Nanodots from Cinnamon Bark for Improved Fluorescent Yeast Cell Imaging.

L-Arginine Doped Carbon Nanodots from Cinnamon Bark for Improved Fluorescent Yeast Cell Imaging.

In this study, we present an economical and efficient synthesis method for carbon nanodots (CNDs) derived from cinnamon bark wood powder, with the incorporation of L-arginine as a dopant at varying ratios (Cinnamon : L-Arginine - 1:0.25, 1:0.5) via a hydrothermal reaction. Extensive structural and optical characterization was conducted through techniques such as FTIR, XRD, HR-TEM, DLS, UV-Vis, and PL spectra, providing a comprehensive understanding of the properties of CNDs and doped-CNDs. Quantum yields (QY) were quantified for synthesized materials, contributing to the assessment of their fluorescence efficiency. The synthesized CNDs were successfully applied for bioimaging of yeast cells, employing fluorescence microscopy to visualize their interaction. Remarkably, L-arginine-doped CNDs exhibited enhanced fluorescence, showcasing the influence of the dopant. The nature of these CNDs was rigorously investigated, confirming their biocompatibility. Notably, this work presents a novel approach to synthesizing CNDs from a renewable and sustainable source, cinnamon bark wood powder, while exploring the effects of L-arginine doping on their optical and biological properties. This work not only contributes to the synthesis and characterization of CNDs but also highlights their potential for diverse applications, emphasizing their structural, optical, and biological attributes. The findings underscore the versatility of CNDs derived from cinnamon bark wood powder and their potential for advancing biotechnological and imaging applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信