Keren Shen, Weijie Su, Chunmiao Liang, Dan Shi, Jihong Sun, Risheng Yu
{"title":"利用基于多参数磁共振成像的放射学特征区分小型(< 2 厘米)胰腺导管腺癌和神经内分泌肿瘤。","authors":"Keren Shen, Weijie Su, Chunmiao Liang, Dan Shi, Jihong Sun, Risheng Yu","doi":"10.1007/s00330-024-10837-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To assess MR-based radiomic analysis in preoperatively discriminating small (< 2 cm) pancreatic ductal adenocarcinomas (PDACs) from neuroendocrine tumors (PNETs).</p><p><strong>Methods: </strong>A total of 197 patients (146 in the training cohort, 51 in the validation cohort) from two centers were retrospectively collected. A total of 7338 radiomics features were extracted from T2-weighted, diffusion-weighted, T1-weighted, arterial phase, portal venous phase and delayed phase imaging. The optimal features were selected by the Mann-Whitney U test, Spearman's rank correlation test and least absolute shrinkage and selection operator method and used to construct the radiomic score (Rad-score). Conventional radiological and clinical features were also assessed. Multivariable logistic regression was used to construct a radiological model, a radiomic model and a fusion model.</p><p><strong>Results: </strong>Nine optimal features were identified and used to build the Rad-score. The radiomic model based on the Rad-score achieved satisfactory results with AUCs of 0.905 and 0.930, sensitivities of 0.780 and 0.800, specificities of 0.906 and 0.952 and accuracies of 0.836 and 0.863 for the training and validation cohorts, respectively. The fusion model, incorporating CA19-9, tumor margins, pancreatic duct dilatation and the Rad-score, exhibited the best performance with AUCs of 0.977 and 0.941, sensitivities of 0.914 and 0.852, specificities of 0.954 and 0.950, and accuracies of 0.932 and 0.894 for the training and validation cohorts, respectively.</p><p><strong>Conclusions: </strong>The MR-based Rad-score is a novel image biomarker for discriminating small PDACs from PNETs. A fusion model combining radiomic, radiological and clinical features performed very well in differentially diagnosing these two tumors.</p><p><strong>Clinical relevance statement: </strong>A fusion model combining MR-based radiomic, radiological, and clinical features could help differentiate between small pancreatic ductal adenocarcinomas and pancreatic neuroendocrine tumors.</p><p><strong>Key points: </strong>Preoperatively differentiating small pancreatic ductal adenocarcinomas (PDACs) and pancreatic neuroendocrine tumors (PNETs) is challenging. Multiparametric MRI-based Rad-score can be used for discriminating small PDACs from PNETs. A fusion model incorporating radiomic, radiological, and clinical features differentiated small PDACs from PNETs well.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"7553-7563"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiating small (< 2 cm) pancreatic ductal adenocarcinoma from neuroendocrine tumors with multiparametric MRI-based radiomic features.\",\"authors\":\"Keren Shen, Weijie Su, Chunmiao Liang, Dan Shi, Jihong Sun, Risheng Yu\",\"doi\":\"10.1007/s00330-024-10837-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To assess MR-based radiomic analysis in preoperatively discriminating small (< 2 cm) pancreatic ductal adenocarcinomas (PDACs) from neuroendocrine tumors (PNETs).</p><p><strong>Methods: </strong>A total of 197 patients (146 in the training cohort, 51 in the validation cohort) from two centers were retrospectively collected. A total of 7338 radiomics features were extracted from T2-weighted, diffusion-weighted, T1-weighted, arterial phase, portal venous phase and delayed phase imaging. The optimal features were selected by the Mann-Whitney U test, Spearman's rank correlation test and least absolute shrinkage and selection operator method and used to construct the radiomic score (Rad-score). Conventional radiological and clinical features were also assessed. Multivariable logistic regression was used to construct a radiological model, a radiomic model and a fusion model.</p><p><strong>Results: </strong>Nine optimal features were identified and used to build the Rad-score. The radiomic model based on the Rad-score achieved satisfactory results with AUCs of 0.905 and 0.930, sensitivities of 0.780 and 0.800, specificities of 0.906 and 0.952 and accuracies of 0.836 and 0.863 for the training and validation cohorts, respectively. The fusion model, incorporating CA19-9, tumor margins, pancreatic duct dilatation and the Rad-score, exhibited the best performance with AUCs of 0.977 and 0.941, sensitivities of 0.914 and 0.852, specificities of 0.954 and 0.950, and accuracies of 0.932 and 0.894 for the training and validation cohorts, respectively.</p><p><strong>Conclusions: </strong>The MR-based Rad-score is a novel image biomarker for discriminating small PDACs from PNETs. A fusion model combining radiomic, radiological and clinical features performed very well in differentially diagnosing these two tumors.</p><p><strong>Clinical relevance statement: </strong>A fusion model combining MR-based radiomic, radiological, and clinical features could help differentiate between small pancreatic ductal adenocarcinomas and pancreatic neuroendocrine tumors.</p><p><strong>Key points: </strong>Preoperatively differentiating small pancreatic ductal adenocarcinomas (PDACs) and pancreatic neuroendocrine tumors (PNETs) is challenging. Multiparametric MRI-based Rad-score can be used for discriminating small PDACs from PNETs. A fusion model incorporating radiomic, radiological, and clinical features differentiated small PDACs from PNETs well.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":\" \",\"pages\":\"7553-7563\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-024-10837-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-10837-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Differentiating small (< 2 cm) pancreatic ductal adenocarcinoma from neuroendocrine tumors with multiparametric MRI-based radiomic features.
Objectives: To assess MR-based radiomic analysis in preoperatively discriminating small (< 2 cm) pancreatic ductal adenocarcinomas (PDACs) from neuroendocrine tumors (PNETs).
Methods: A total of 197 patients (146 in the training cohort, 51 in the validation cohort) from two centers were retrospectively collected. A total of 7338 radiomics features were extracted from T2-weighted, diffusion-weighted, T1-weighted, arterial phase, portal venous phase and delayed phase imaging. The optimal features were selected by the Mann-Whitney U test, Spearman's rank correlation test and least absolute shrinkage and selection operator method and used to construct the radiomic score (Rad-score). Conventional radiological and clinical features were also assessed. Multivariable logistic regression was used to construct a radiological model, a radiomic model and a fusion model.
Results: Nine optimal features were identified and used to build the Rad-score. The radiomic model based on the Rad-score achieved satisfactory results with AUCs of 0.905 and 0.930, sensitivities of 0.780 and 0.800, specificities of 0.906 and 0.952 and accuracies of 0.836 and 0.863 for the training and validation cohorts, respectively. The fusion model, incorporating CA19-9, tumor margins, pancreatic duct dilatation and the Rad-score, exhibited the best performance with AUCs of 0.977 and 0.941, sensitivities of 0.914 and 0.852, specificities of 0.954 and 0.950, and accuracies of 0.932 and 0.894 for the training and validation cohorts, respectively.
Conclusions: The MR-based Rad-score is a novel image biomarker for discriminating small PDACs from PNETs. A fusion model combining radiomic, radiological and clinical features performed very well in differentially diagnosing these two tumors.
Clinical relevance statement: A fusion model combining MR-based radiomic, radiological, and clinical features could help differentiate between small pancreatic ductal adenocarcinomas and pancreatic neuroendocrine tumors.
Key points: Preoperatively differentiating small pancreatic ductal adenocarcinomas (PDACs) and pancreatic neuroendocrine tumors (PNETs) is challenging. Multiparametric MRI-based Rad-score can be used for discriminating small PDACs from PNETs. A fusion model incorporating radiomic, radiological, and clinical features differentiated small PDACs from PNETs well.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.