在日粮中用发酵菜籽粕替代豆粕:对罗非鱼幼鱼(Oreochromis niloticus)生长性能、抗氧化能力以及肝脏和肠道健康的潜在影响。

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fish Physiology and Biochemistry Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI:10.1007/s10695-024-01363-0
Yaxue Li, Xing Lu, Lixue Dong, Di Peng, Jianmin Zhang, Zongbin Cui, Hua Wen, Juan Tian, Ming Jiang
{"title":"在日粮中用发酵菜籽粕替代豆粕:对罗非鱼幼鱼(Oreochromis niloticus)生长性能、抗氧化能力以及肝脏和肠道健康的潜在影响。","authors":"Yaxue Li, Xing Lu, Lixue Dong, Di Peng, Jianmin Zhang, Zongbin Cui, Hua Wen, Juan Tian, Ming Jiang","doi":"10.1007/s10695-024-01363-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to evaluate the effects of substituting soybean meal with fermented rapeseed meal (FRM) on growth, antioxidant capacity, and liver and intestinal health of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). A total of 450 tilapia (7.22 ± 0.15 g) were fed with five experimental diets, including a basal diet containing 40% soybean meal (CP0), which was subsequently replaced by 25% (CP25), 50% (CP50), 75% (CP75), and 100% (CP100) FRM in a recirculated aquiculture system for 9 weeks (30 fish per tank in triplicates). The results showed that the weight gain, specific growth rate, feed intake, feed efficiency, hepatosomatic index, and viscerosomatic index of fish in both CP75 and CP100 groups were significantly lower than those in CP0 group (P < 0.05). The fish in CP100 group had the lower content of muscle crude protein while the higher level of muscle crude lipid (P < 0.05). Activities of serum aspartate aminotransferase, alanine aminotransferase along with total triglyceride in CP100 group were significantly higher than those in CP0 group (P < 0.05). There were no significant differences in the contents of liver protease, amylase, and lipase among five groups (P > 0.05). The activities of liver total antioxidant capacity and superoxide dismutase exhibited the increased tendency with the increase of FRM replacement levels from 25 to 50% (P < 0.05), while then significantly decreased from 75 to 100% (P < 0.05). Histological morphology indicated that the fish in between CP75 and CP100 groups had poor liver and intestine health. Intestinal microbial diversity analysis showed that the relative abundance of Cetobacterium and Alcaligenaceae in both CP75 and CP100 groups were lower than that in other three groups. In conclusion, the maximum replacement level of soybean meal with FRM in the diet was determined to be 50% without compromising the growth performance, antioxidant status, and liver and intestinal health of tilapia under the current experimental conditions. The observed decrease in food intake and subsequent retarded growth performance in the CP75 and CP100 groups can be attributed directly to a reduction in feed palatability caused by FRM.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"1683-1699"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Replacing soybean meal with fermented rapeseed meal in diets: potential effects on growth performance, antioxidant capacity, and liver and intestinal health of juvenile tilapia (Oreochromis niloticus).\",\"authors\":\"Yaxue Li, Xing Lu, Lixue Dong, Di Peng, Jianmin Zhang, Zongbin Cui, Hua Wen, Juan Tian, Ming Jiang\",\"doi\":\"10.1007/s10695-024-01363-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to evaluate the effects of substituting soybean meal with fermented rapeseed meal (FRM) on growth, antioxidant capacity, and liver and intestinal health of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). A total of 450 tilapia (7.22 ± 0.15 g) were fed with five experimental diets, including a basal diet containing 40% soybean meal (CP0), which was subsequently replaced by 25% (CP25), 50% (CP50), 75% (CP75), and 100% (CP100) FRM in a recirculated aquiculture system for 9 weeks (30 fish per tank in triplicates). The results showed that the weight gain, specific growth rate, feed intake, feed efficiency, hepatosomatic index, and viscerosomatic index of fish in both CP75 and CP100 groups were significantly lower than those in CP0 group (P < 0.05). The fish in CP100 group had the lower content of muscle crude protein while the higher level of muscle crude lipid (P < 0.05). Activities of serum aspartate aminotransferase, alanine aminotransferase along with total triglyceride in CP100 group were significantly higher than those in CP0 group (P < 0.05). There were no significant differences in the contents of liver protease, amylase, and lipase among five groups (P > 0.05). The activities of liver total antioxidant capacity and superoxide dismutase exhibited the increased tendency with the increase of FRM replacement levels from 25 to 50% (P < 0.05), while then significantly decreased from 75 to 100% (P < 0.05). Histological morphology indicated that the fish in between CP75 and CP100 groups had poor liver and intestine health. Intestinal microbial diversity analysis showed that the relative abundance of Cetobacterium and Alcaligenaceae in both CP75 and CP100 groups were lower than that in other three groups. In conclusion, the maximum replacement level of soybean meal with FRM in the diet was determined to be 50% without compromising the growth performance, antioxidant status, and liver and intestinal health of tilapia under the current experimental conditions. The observed decrease in food intake and subsequent retarded growth performance in the CP75 and CP100 groups can be attributed directly to a reduction in feed palatability caused by FRM.</p>\",\"PeriodicalId\":12274,\"journal\":{\"name\":\"Fish Physiology and Biochemistry\",\"volume\":\" \",\"pages\":\"1683-1699\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish Physiology and Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10695-024-01363-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-024-01363-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估发酵菜籽粕(FRM)替代豆粕对基因改良养殖罗非鱼(GIFT,Oreochromis niloticus)的生长、抗氧化能力、肝脏和肠道健康的影响。在循环水产养殖系统中,用五种试验日粮喂养了 450 尾罗非鱼(7.22 ± 0.15 克),其中包括含 40% 豆粕(CP0)的基础日粮,然后分别用 25%(CP25)、50%(CP50)、75%(CP75)和 100% (CP100)的 FRM 替代,连续喂养 9 周(每缸 30 尾,三重复)。结果表明,CP75 和 CP100 组鱼的增重、特定生长率、摄食量、饲料效率、肝脏指数和粘液指数均显著低于 CP0 组(P 0.05)。肝脏总抗氧化能力和超氧化物歧化酶的活性随着 FRM 替代水平从 25%到 50%的增加而呈上升趋势(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Replacing soybean meal with fermented rapeseed meal in diets: potential effects on growth performance, antioxidant capacity, and liver and intestinal health of juvenile tilapia (Oreochromis niloticus).

Replacing soybean meal with fermented rapeseed meal in diets: potential effects on growth performance, antioxidant capacity, and liver and intestinal health of juvenile tilapia (Oreochromis niloticus).

This study aims to evaluate the effects of substituting soybean meal with fermented rapeseed meal (FRM) on growth, antioxidant capacity, and liver and intestinal health of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). A total of 450 tilapia (7.22 ± 0.15 g) were fed with five experimental diets, including a basal diet containing 40% soybean meal (CP0), which was subsequently replaced by 25% (CP25), 50% (CP50), 75% (CP75), and 100% (CP100) FRM in a recirculated aquiculture system for 9 weeks (30 fish per tank in triplicates). The results showed that the weight gain, specific growth rate, feed intake, feed efficiency, hepatosomatic index, and viscerosomatic index of fish in both CP75 and CP100 groups were significantly lower than those in CP0 group (P < 0.05). The fish in CP100 group had the lower content of muscle crude protein while the higher level of muscle crude lipid (P < 0.05). Activities of serum aspartate aminotransferase, alanine aminotransferase along with total triglyceride in CP100 group were significantly higher than those in CP0 group (P < 0.05). There were no significant differences in the contents of liver protease, amylase, and lipase among five groups (P > 0.05). The activities of liver total antioxidant capacity and superoxide dismutase exhibited the increased tendency with the increase of FRM replacement levels from 25 to 50% (P < 0.05), while then significantly decreased from 75 to 100% (P < 0.05). Histological morphology indicated that the fish in between CP75 and CP100 groups had poor liver and intestine health. Intestinal microbial diversity analysis showed that the relative abundance of Cetobacterium and Alcaligenaceae in both CP75 and CP100 groups were lower than that in other three groups. In conclusion, the maximum replacement level of soybean meal with FRM in the diet was determined to be 50% without compromising the growth performance, antioxidant status, and liver and intestinal health of tilapia under the current experimental conditions. The observed decrease in food intake and subsequent retarded growth performance in the CP75 and CP100 groups can be attributed directly to a reduction in feed palatability caused by FRM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信