Paco Castaneda Ruan, J Cory Benson, Mohamed Trebak, Vivien Kirk, James Sneyd
{"title":"T 淋巴细胞中 Ca 2 + 振荡的竞争机制共存模型","authors":"Paco Castaneda Ruan, J Cory Benson, Mohamed Trebak, Vivien Kirk, James Sneyd","doi":"10.1007/s11538-024-01317-w","DOIUrl":null,"url":null,"abstract":"<p><p><math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> is a ubiquitous signaling mechanism across different cell types. In T-cells, it is associated with cytokine production and immune function. Benson et al. have shown the coexistence of competing <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> oscillations during antigen stimulation of T-cell receptors, depending on the presence of extracellular <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> influx through the <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> release-activated <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> channel (Benson in J Biol Chem 29:105310, 2023). In this paper, we construct a mathematical model consisting of five ordinary differential equations and analyze the relationship between the competing oscillatory mechanisms.. We perform bifurcation analysis on two versions of our model, corresponding to the two oscillatory types, to find the defining characteristics of these two families.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"86"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176111/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">A Model for the Coexistence of Competing Mechanisms for <ns0:math><ns0:msup><ns0:mtext>Ca</ns0:mtext> <ns0:mrow><ns0:mtext>2</ns0:mtext> <ns0:mo>+</ns0:mo></ns0:mrow> </ns0:msup> </ns0:math> Oscillations in T-lymphocytes.\",\"authors\":\"Paco Castaneda Ruan, J Cory Benson, Mohamed Trebak, Vivien Kirk, James Sneyd\",\"doi\":\"10.1007/s11538-024-01317-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> is a ubiquitous signaling mechanism across different cell types. In T-cells, it is associated with cytokine production and immune function. Benson et al. have shown the coexistence of competing <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> oscillations during antigen stimulation of T-cell receptors, depending on the presence of extracellular <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> influx through the <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> release-activated <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> channel (Benson in J Biol Chem 29:105310, 2023). In this paper, we construct a mathematical model consisting of five ordinary differential equations and analyze the relationship between the competing oscillatory mechanisms.. We perform bifurcation analysis on two versions of our model, corresponding to the two oscillatory types, to find the defining characteristics of these two families.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"86 7\",\"pages\":\"86\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01317-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01317-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
Ca 2 + 是不同类型细胞中普遍存在的信号机制。在 T 细胞中,它与细胞因子的产生和免疫功能有关。Benson 等人的研究表明,在抗原刺激 T 细胞受体的过程中,根据通过 Ca 2 + 释放激活的 Ca 2 + 通道流入细胞外 Ca 2 + 的情况,会同时出现相互竞争的 Ca 2 + 振荡(Benson,J Biol Chem 29:105310, 2023)。在本文中,我们构建了一个由五个常微分方程组成的数学模型,并分析了相互竞争的振荡机制之间的关系。我们对与两种振荡类型相对应的两个版本的模型进行了分岔分析,以找到这两个家族的决定性特征。
A Model for the Coexistence of Competing Mechanisms for Ca2+ Oscillations in T-lymphocytes.
is a ubiquitous signaling mechanism across different cell types. In T-cells, it is associated with cytokine production and immune function. Benson et al. have shown the coexistence of competing oscillations during antigen stimulation of T-cell receptors, depending on the presence of extracellular influx through the release-activated channel (Benson in J Biol Chem 29:105310, 2023). In this paper, we construct a mathematical model consisting of five ordinary differential equations and analyze the relationship between the competing oscillatory mechanisms.. We perform bifurcation analysis on two versions of our model, corresponding to the two oscillatory types, to find the defining characteristics of these two families.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.