Lívia Petrisková , Marie Kodedová , Mária Balážová , Hana Sychrová , Martin Valachovič
{"title":"脂滴可控制缺氧胁迫下酵母膜中的非酵母固醇的负面影响。","authors":"Lívia Petrisková , Marie Kodedová , Mária Balážová , Hana Sychrová , Martin Valachovič","doi":"10.1016/j.bbalip.2024.159523","DOIUrl":null,"url":null,"abstract":"<div><p>The effectivity of utilization of exogenous sterols in the yeast <em>Saccharomyces cerevisiae</em> exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in <em>hem1</em>∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell – alleviation of the lipotoxicity of unsaturated fatty acids.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 7","pages":"Article 159523"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid droplets control the negative effect of non-yeast sterols in membranes of Saccharomyces cerevisiae under hypoxic stress\",\"authors\":\"Lívia Petrisková , Marie Kodedová , Mária Balážová , Hana Sychrová , Martin Valachovič\",\"doi\":\"10.1016/j.bbalip.2024.159523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effectivity of utilization of exogenous sterols in the yeast <em>Saccharomyces cerevisiae</em> exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in <em>hem1</em>∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell – alleviation of the lipotoxicity of unsaturated fatty acids.</p></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1869 7\",\"pages\":\"Article 159523\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000738\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000738","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lipid droplets control the negative effect of non-yeast sterols in membranes of Saccharomyces cerevisiae under hypoxic stress
The effectivity of utilization of exogenous sterols in the yeast Saccharomyces cerevisiae exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in hem1∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell – alleviation of the lipotoxicity of unsaturated fatty acids.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.