用于下一代神经接口的水凝胶

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Simin Cheng, Ruiqi Zhu, Xiaomin Xu
{"title":"用于下一代神经接口的水凝胶","authors":"Simin Cheng, Ruiqi Zhu, Xiaomin Xu","doi":"10.1038/s43246-024-00541-0","DOIUrl":null,"url":null,"abstract":"Overcoming the mechanical disparities between implantable neural electrodes and biological tissue is crucial in mitigating immune responses, reducing shear motion, and ensuring durable functionality. Emerging hydrogel-based neural interfaces, with their volumetric capacitance, customizable conductivity, and tissue-mimicking mechanical properties, offer a more efficient, less detrimental, and chronically stable alternative to their rigid counterparts. Here, we provide an overview of the exceptional advantages of hydrogels for the development of next-generation neural interfaces and highlight recent advancements that are transforming the field. Materials are needed that can form stable interfaces with neurons, and soft materials are the most promising for this. Here, the advantages and challenges associated with neural interfaces using hydrogels, particularly conductive hydrogels, are discussed.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00541-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrogels for next generation neural interfaces\",\"authors\":\"Simin Cheng, Ruiqi Zhu, Xiaomin Xu\",\"doi\":\"10.1038/s43246-024-00541-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overcoming the mechanical disparities between implantable neural electrodes and biological tissue is crucial in mitigating immune responses, reducing shear motion, and ensuring durable functionality. Emerging hydrogel-based neural interfaces, with their volumetric capacitance, customizable conductivity, and tissue-mimicking mechanical properties, offer a more efficient, less detrimental, and chronically stable alternative to their rigid counterparts. Here, we provide an overview of the exceptional advantages of hydrogels for the development of next-generation neural interfaces and highlight recent advancements that are transforming the field. Materials are needed that can form stable interfaces with neurons, and soft materials are the most promising for this. Here, the advantages and challenges associated with neural interfaces using hydrogels, particularly conductive hydrogels, are discussed.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00541-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00541-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00541-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

克服植入式神经电极与生物组织之间的机械差异对于减轻免疫反应、减少剪切运动和确保持久功能至关重要。新出现的水凝胶神经接口具有体积电容、可定制的导电性和模拟组织的机械特性,与刚性接口相比,水凝胶神经接口是一种效率更高、危害更小、长期稳定的替代品。在此,我们将概述水凝胶在开发新一代神经界面方面的独特优势,并重点介绍正在改变这一领域的最新进展。我们需要能与神经元形成稳定界面的材料,而软材料在这方面最有前途。本文将讨论使用水凝胶(尤其是导电水凝胶)开发神经界面的优势和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogels for next generation neural interfaces

Hydrogels for next generation neural interfaces
Overcoming the mechanical disparities between implantable neural electrodes and biological tissue is crucial in mitigating immune responses, reducing shear motion, and ensuring durable functionality. Emerging hydrogel-based neural interfaces, with their volumetric capacitance, customizable conductivity, and tissue-mimicking mechanical properties, offer a more efficient, less detrimental, and chronically stable alternative to their rigid counterparts. Here, we provide an overview of the exceptional advantages of hydrogels for the development of next-generation neural interfaces and highlight recent advancements that are transforming the field. Materials are needed that can form stable interfaces with neurons, and soft materials are the most promising for this. Here, the advantages and challenges associated with neural interfaces using hydrogels, particularly conductive hydrogels, are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信