{"title":"多孔介质中流体注入实验中流体成分的影响","authors":"Charalampos Konstantinou , Hassan Farooq , Giovanna Biscontin , Panos Papanastasiou","doi":"10.1016/j.jconhyd.2024.104383","DOIUrl":null,"url":null,"abstract":"<div><p>Experiments on fluid flow in porous media, using fluids loaded with solids of various grain sizes, have been conducted in a modified Hele-Shaw setup. This setup utilised weakly cemented porous media with specific hydraulic and mechanical properties. Fluid injection in coarse granular media with clean or low-concentration fine particles, results in infiltration only, with pressure close to the material tensile strength, while injection in finer granular material causes damage alongside infiltration, with the fluid pressure still close to the material tensile strength. When larger particle sizes or higher particle concentrations are used in the mixture, the fluid travels further within the porous medium, primarily influenced by the grain size of the granular medium. In the latter case, the Darcy flow equation with an effective permeability term can be employed to determine the pressure differential. For the largest particle sizes included in the fluid, the equation is still applicable, but the effective permeability requires adjustment for particle size within the fluid rather than the granular medium. This is crucial when the injection point is locally clogged. The experiments show that fracturing conditions are controlled by different mechanisms. Dimensional and statistical analysis was used to classify the injection pressures to regimes predicted by fracturing theory or by Darcy law with modified effective permeabilities. The findings show that both the material properties and fluid composition are important designing parameters.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"265 ","pages":"Article 104383"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of fluid composition in fluid injection experiments in porous media\",\"authors\":\"Charalampos Konstantinou , Hassan Farooq , Giovanna Biscontin , Panos Papanastasiou\",\"doi\":\"10.1016/j.jconhyd.2024.104383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experiments on fluid flow in porous media, using fluids loaded with solids of various grain sizes, have been conducted in a modified Hele-Shaw setup. This setup utilised weakly cemented porous media with specific hydraulic and mechanical properties. Fluid injection in coarse granular media with clean or low-concentration fine particles, results in infiltration only, with pressure close to the material tensile strength, while injection in finer granular material causes damage alongside infiltration, with the fluid pressure still close to the material tensile strength. When larger particle sizes or higher particle concentrations are used in the mixture, the fluid travels further within the porous medium, primarily influenced by the grain size of the granular medium. In the latter case, the Darcy flow equation with an effective permeability term can be employed to determine the pressure differential. For the largest particle sizes included in the fluid, the equation is still applicable, but the effective permeability requires adjustment for particle size within the fluid rather than the granular medium. This is crucial when the injection point is locally clogged. The experiments show that fracturing conditions are controlled by different mechanisms. Dimensional and statistical analysis was used to classify the injection pressures to regimes predicted by fracturing theory or by Darcy law with modified effective permeabilities. The findings show that both the material properties and fluid composition are important designing parameters.</p></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"265 \",\"pages\":\"Article 104383\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000871\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000871","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of fluid composition in fluid injection experiments in porous media
Experiments on fluid flow in porous media, using fluids loaded with solids of various grain sizes, have been conducted in a modified Hele-Shaw setup. This setup utilised weakly cemented porous media with specific hydraulic and mechanical properties. Fluid injection in coarse granular media with clean or low-concentration fine particles, results in infiltration only, with pressure close to the material tensile strength, while injection in finer granular material causes damage alongside infiltration, with the fluid pressure still close to the material tensile strength. When larger particle sizes or higher particle concentrations are used in the mixture, the fluid travels further within the porous medium, primarily influenced by the grain size of the granular medium. In the latter case, the Darcy flow equation with an effective permeability term can be employed to determine the pressure differential. For the largest particle sizes included in the fluid, the equation is still applicable, but the effective permeability requires adjustment for particle size within the fluid rather than the granular medium. This is crucial when the injection point is locally clogged. The experiments show that fracturing conditions are controlled by different mechanisms. Dimensional and statistical analysis was used to classify the injection pressures to regimes predicted by fracturing theory or by Darcy law with modified effective permeabilities. The findings show that both the material properties and fluid composition are important designing parameters.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.