Soobin Park , Inseong Hwang , Jae Chan Park , Tae Joo Park , Han-Seung Lee , Sang Yeon Lee , Hyun-Min Yang , Bongyoung Yoo
{"title":"利用多孔氮化硅结构制造碱性条件下的湿度监测传感器","authors":"Soobin Park , Inseong Hwang , Jae Chan Park , Tae Joo Park , Han-Seung Lee , Sang Yeon Lee , Hyun-Min Yang , Bongyoung Yoo","doi":"10.1016/j.snr.2024.100203","DOIUrl":null,"url":null,"abstract":"<div><p>Porous silicon nitride structures were fabricated for a humidity sensor. The porous silicon structures were fabricated by the metal-assisted chemical etching process, and the conformal silicon nitride thin film was deposited by the atomic layer deposition process. The optimized porous sensor with the 10 nm-thick silicon nitride thin film had a hydrophilic surface and compared to other sensors, had an excellent humidity sensing response. Especially, it showed a superior humidity sensing response at 1 kHz with fast response and recovery times of 13.3 s and 12.4 s, respectively, were observed. Based on the electrochemical impedance spectroscopy results, the equivalent circuits and humidity sensing mechanism were discussed. The chemical stability of the silicon nitride was characterized using Tafel analysis in alkaline electrolytes. Additionally, the sensor's humidity sensing capabilities were tested under cement-embedded conditions.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100203"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000195/pdfft?md5=3678eef3e7c87eccb19ae1a05ae621ac&pid=1-s2.0-S2666053924000195-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication of humidity monitoring sensor using porous silicon nitride structures for alkaline conditions\",\"authors\":\"Soobin Park , Inseong Hwang , Jae Chan Park , Tae Joo Park , Han-Seung Lee , Sang Yeon Lee , Hyun-Min Yang , Bongyoung Yoo\",\"doi\":\"10.1016/j.snr.2024.100203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porous silicon nitride structures were fabricated for a humidity sensor. The porous silicon structures were fabricated by the metal-assisted chemical etching process, and the conformal silicon nitride thin film was deposited by the atomic layer deposition process. The optimized porous sensor with the 10 nm-thick silicon nitride thin film had a hydrophilic surface and compared to other sensors, had an excellent humidity sensing response. Especially, it showed a superior humidity sensing response at 1 kHz with fast response and recovery times of 13.3 s and 12.4 s, respectively, were observed. Based on the electrochemical impedance spectroscopy results, the equivalent circuits and humidity sensing mechanism were discussed. The chemical stability of the silicon nitride was characterized using Tafel analysis in alkaline electrolytes. Additionally, the sensor's humidity sensing capabilities were tested under cement-embedded conditions.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"8 \",\"pages\":\"Article 100203\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000195/pdfft?md5=3678eef3e7c87eccb19ae1a05ae621ac&pid=1-s2.0-S2666053924000195-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Fabrication of humidity monitoring sensor using porous silicon nitride structures for alkaline conditions
Porous silicon nitride structures were fabricated for a humidity sensor. The porous silicon structures were fabricated by the metal-assisted chemical etching process, and the conformal silicon nitride thin film was deposited by the atomic layer deposition process. The optimized porous sensor with the 10 nm-thick silicon nitride thin film had a hydrophilic surface and compared to other sensors, had an excellent humidity sensing response. Especially, it showed a superior humidity sensing response at 1 kHz with fast response and recovery times of 13.3 s and 12.4 s, respectively, were observed. Based on the electrochemical impedance spectroscopy results, the equivalent circuits and humidity sensing mechanism were discussed. The chemical stability of the silicon nitride was characterized using Tafel analysis in alkaline electrolytes. Additionally, the sensor's humidity sensing capabilities were tested under cement-embedded conditions.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.