严重 COVID-19 疾病的风险因素会增加 SARS-CoV-2 对内皮细胞和周细胞的感染性。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Open Biology Pub Date : 2024-06-01 Epub Date: 2024-06-12 DOI:10.1098/rsob.230349
Luca Biasetti, Nikos Zervogiannis, Kira Shaw, Harry Trewhitt, Louise Serpell, Dalan Bailey, Edward Wright, Catherine N Hall
{"title":"严重 COVID-19 疾病的风险因素会增加 SARS-CoV-2 对内皮细胞和周细胞的感染性。","authors":"Luca Biasetti, Nikos Zervogiannis, Kira Shaw, Harry Trewhitt, Louise Serpell, Dalan Bailey, Edward Wright, Catherine N Hall","doi":"10.1098/rsob.230349","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 6","pages":"230349"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Risk factors for severe COVID-19 disease increase SARS-CoV-2 infectivity of endothelial cells and pericytes.\",\"authors\":\"Luca Biasetti, Nikos Zervogiannis, Kira Shaw, Harry Trewhitt, Louise Serpell, Dalan Bailey, Edward Wright, Catherine N Hall\",\"doi\":\"10.1098/rsob.230349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"14 6\",\"pages\":\"230349\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.230349\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.230349","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

冠状病毒病 2019(COVID-19)最初被认为主要是一种呼吸道疾病,但现在已知它还会影响包括心脏和大脑在内的其他器官。COVID-19影响不同器官的一个主要途径是通过血管系统。我们研究了载脂蛋白 E(APOE)基因型和炎症对伪型严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)病毒在小鼠和人类培养的内皮细胞和周细胞中的血管感染性的影响。众所周知,拥有 APOE4 等位基因或存在全身性炎症会加重 COVID-19 的严重程度。利用靶向替代人类 APOE3 和 APOE4 小鼠以及细菌脂多糖(LPS)诱导的炎症,我们研究了 SARS-CoV-2 的感染情况。研究表明,与内皮细胞相比,小鼠脑血管周细胞的感染率更高,表达 APOE4 的培养物的感染率也更高。此外,通过事先用 LPS 培养来增加细胞的炎症状态,也会增加人和小鼠周细胞以及人内皮细胞的感染性。我们的研究结果提供了对COVID-19严重感染机制的见解,强调了APOE4基因型和先前的炎症等风险因素是如何通过增强病毒感染血管细胞的能力来加剧疾病的严重性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk factors for severe COVID-19 disease increase SARS-CoV-2 infectivity of endothelial cells and pericytes.

Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Biology
Open Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.00
自引率
1.70%
发文量
136
审稿时长
6-12 weeks
期刊介绍: Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信