Vidhyadhar Nandana, Nadra Al-Husini, Arti Vaishnav, Kulathungage H Dilrangi, Jared M Schrader
{"title":"新月芽孢杆菌 RNase E 的凝结有助于自调节和健康。","authors":"Vidhyadhar Nandana, Nadra Al-Husini, Arti Vaishnav, Kulathungage H Dilrangi, Jared M Schrader","doi":"10.1091/mbc.E23-12-0493","DOIUrl":null,"url":null,"abstract":"<p><p>RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from <i>Escherichia coli</i> and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium <i>Caulobacter crescentus</i> RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar104"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321048/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Caulobacter crescentus</i> RNase E condensation contributes to autoregulation and fitness.\",\"authors\":\"Vidhyadhar Nandana, Nadra Al-Husini, Arti Vaishnav, Kulathungage H Dilrangi, Jared M Schrader\",\"doi\":\"10.1091/mbc.E23-12-0493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from <i>Escherichia coli</i> and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium <i>Caulobacter crescentus</i> RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"ar104\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E23-12-0493\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E23-12-0493","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
RNase E是细菌中最常见的RNA衰变核酸酶,可设定全局mRNA衰变速率,并为RNA降解体复合物和BR体的形成提供支架。为了正确设定全球 mRNA 的衰变速率,研究发现大肠杆菌和邻近γ-蛋白细菌的 RNase E 可通过其 mRNA 的 5' UTR 的衰变来自动调节 RNase E 的水平。虽然在 Rfam 数据库中的其他细菌群中不存在 5' UTR,但我们发现α-新月杆菌 RNase E 含有类似的 5' UTR 结构,这种结构促进了 RNase E 的自动调节。在这两种细菌中,RNase E 的 C 端 IDR 是发生适当的自动调节所必需的,而且该 IDR 也是 RNase E 相分离、产生 BR 体所必需和足够的。利用体外纯化的 RNase E,我们发现 IDR 促进相分离的能力与 5' UTR 裂解的增强相关,这表明 RNase E 与 5' UTR 的相分离增强了自动调节。最后,通过生长竞争实验,我们发现具有自动调节能力的菌株能迅速击败具有 5' UTR 突变且不能自动调节的菌株,这表明自动调节能促进细胞的最佳适应性。
Caulobacter crescentus RNase E condensation contributes to autoregulation and fitness.
RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from Escherichia coli and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium Caulobacter crescentus RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.