以 GHz 像素速率对全血中的干细胞进行谐波成像。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-10-01 Epub Date: 2024-06-11 DOI:10.1002/smll.202401472
Sebastian Karpf, Nina Glöckner Burmeister, Laurence Dubreil, Shayantani Ghosh, Reka Hollandi, Julien Pichon, Isabelle Leroux, Alessandra Henkel, Valerie Lutz, Jonas Jurkevičius, Alexandra Latshaw, Vasyl Kilin, Tonio Kutscher, Moritz Wiggert, Oscar Saavedra-Villanueva, Alfred Vogel, Robert A Huber, Peter Horvath, Karl Rouger, Luigi Bonacina
{"title":"以 GHz 像素速率对全血中的干细胞进行谐波成像。","authors":"Sebastian Karpf, Nina Glöckner Burmeister, Laurence Dubreil, Shayantani Ghosh, Reka Hollandi, Julien Pichon, Isabelle Leroux, Alessandra Henkel, Valerie Lutz, Jonas Jurkevičius, Alexandra Latshaw, Vasyl Kilin, Tonio Kutscher, Moritz Wiggert, Oscar Saavedra-Villanueva, Alfred Vogel, Robert A Huber, Peter Horvath, Karl Rouger, Luigi Bonacina","doi":"10.1002/smll.202401472","DOIUrl":null,"url":null,"abstract":"<p><p>The pre-clinical validation of cell therapies requires monitoring the biodistribution of transplanted cells in tissues of host organisms. Real-time detection of these cells in the circulatory system and identification of their aggregation state is a crucial piece of information, but necessitates deep penetration and fast imaging with high selectivity, subcellular resolution, and high throughput. In this study, multiphoton-based in-flow detection of human stem cells in whole, unfiltered blood is demonstrated in a microfluidic channel. The approach relies on a multiphoton microscope with diffractive scanning in the direction perpendicular to the flow via a rapidly wavelength-swept laser. Stem cells are labeled with metal oxide harmonic nanoparticles. Thanks to their strong and quasi-instantaneous second harmonic generation (SHG), an imaging rate in excess of 10 000 frames per second is achieved with pixel dwell times of 1 ns, a duration shorter than typical fluorescence lifetimes yet compatible with SHG. Through automated cell identification and segmentation, morphological features of each individual detected event are extracted and cell aggregates are distinguished from isolated cells. This combination of high-speed multiphoton microscopy and high-sensitivity SHG nanoparticle labeling in turbid media promises the detection of rare cells in the bloodstream for assessing novel cell-based therapies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Imaging of Stem Cells in Whole Blood at GHz Pixel Rate.\",\"authors\":\"Sebastian Karpf, Nina Glöckner Burmeister, Laurence Dubreil, Shayantani Ghosh, Reka Hollandi, Julien Pichon, Isabelle Leroux, Alessandra Henkel, Valerie Lutz, Jonas Jurkevičius, Alexandra Latshaw, Vasyl Kilin, Tonio Kutscher, Moritz Wiggert, Oscar Saavedra-Villanueva, Alfred Vogel, Robert A Huber, Peter Horvath, Karl Rouger, Luigi Bonacina\",\"doi\":\"10.1002/smll.202401472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pre-clinical validation of cell therapies requires monitoring the biodistribution of transplanted cells in tissues of host organisms. Real-time detection of these cells in the circulatory system and identification of their aggregation state is a crucial piece of information, but necessitates deep penetration and fast imaging with high selectivity, subcellular resolution, and high throughput. In this study, multiphoton-based in-flow detection of human stem cells in whole, unfiltered blood is demonstrated in a microfluidic channel. The approach relies on a multiphoton microscope with diffractive scanning in the direction perpendicular to the flow via a rapidly wavelength-swept laser. Stem cells are labeled with metal oxide harmonic nanoparticles. Thanks to their strong and quasi-instantaneous second harmonic generation (SHG), an imaging rate in excess of 10 000 frames per second is achieved with pixel dwell times of 1 ns, a duration shorter than typical fluorescence lifetimes yet compatible with SHG. Through automated cell identification and segmentation, morphological features of each individual detected event are extracted and cell aggregates are distinguished from isolated cells. This combination of high-speed multiphoton microscopy and high-sensitivity SHG nanoparticle labeling in turbid media promises the detection of rare cells in the bloodstream for assessing novel cell-based therapies.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202401472\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202401472","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞疗法的临床前验证需要监测移植细胞在宿主生物组织中的生物分布。在循环系统中实时检测这些细胞并识别其聚集状态是一项关键信息,但需要具有高选择性、亚细胞分辨率和高通量的深度穿透和快速成像。本研究在微流体通道中展示了基于多光子的全血、未过滤血液中人类干细胞的流动检测。该方法依赖于多光子显微镜,通过快速波长扫描激光器在垂直于血流的方向上进行衍射扫描。干细胞被标记为金属氧化物谐波纳米粒子。由于其强大的准瞬时二次谐波发生(SHG),成像速度超过每秒 10,000 帧,像素停留时间为 1 毫微秒,比典型的荧光寿命短,但与 SHG 兼容。通过自动细胞识别和分割,可提取每个检测事件的形态特征,并将细胞聚集与孤立细胞区分开来。这种在浑浊介质中将高速多光子显微镜和高灵敏度 SHG 纳米粒子标记相结合的方法有望检测血液中的稀有细胞,从而评估基于细胞的新型疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harmonic Imaging of Stem Cells in Whole Blood at GHz Pixel Rate.

Harmonic Imaging of Stem Cells in Whole Blood at GHz Pixel Rate.

The pre-clinical validation of cell therapies requires monitoring the biodistribution of transplanted cells in tissues of host organisms. Real-time detection of these cells in the circulatory system and identification of their aggregation state is a crucial piece of information, but necessitates deep penetration and fast imaging with high selectivity, subcellular resolution, and high throughput. In this study, multiphoton-based in-flow detection of human stem cells in whole, unfiltered blood is demonstrated in a microfluidic channel. The approach relies on a multiphoton microscope with diffractive scanning in the direction perpendicular to the flow via a rapidly wavelength-swept laser. Stem cells are labeled with metal oxide harmonic nanoparticles. Thanks to their strong and quasi-instantaneous second harmonic generation (SHG), an imaging rate in excess of 10 000 frames per second is achieved with pixel dwell times of 1 ns, a duration shorter than typical fluorescence lifetimes yet compatible with SHG. Through automated cell identification and segmentation, morphological features of each individual detected event are extracted and cell aggregates are distinguished from isolated cells. This combination of high-speed multiphoton microscopy and high-sensitivity SHG nanoparticle labeling in turbid media promises the detection of rare cells in the bloodstream for assessing novel cell-based therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信