Aqsa Abid, Muhammad Talha, Abid Aslam Maan, Muhammad Kashif Iqbal Khan, Muhammad Asif, Irrum Babu
{"title":"从椰子废料中提取的纤维素基智能薄膜的开发与表征","authors":"Aqsa Abid, Muhammad Talha, Abid Aslam Maan, Muhammad Kashif Iqbal Khan, Muhammad Asif, Irrum Babu","doi":"10.1111/jfs.13146","DOIUrl":null,"url":null,"abstract":"<p>The increasing demands for safe and quality packaged food have diverted all the intentions toward the enhancement of hazard detection and quantification techniques. The integration of smart functions with the novel biomaterials-based packaging provides an effective approach to deal with the uplifting concerns of food safety and environmental pollution. In the current study, firstly the cellulose was extracted from coconut waste, then it was subjected to prepare biodegradable films and lastly the films were incorporated with curcumin or quercetin dihydrate. The films were characterized for their mechanical, barrier and smart properties. The incorporation of curcumin or quercetin dihydrate improved the physicochemical properties of the cellulose films, including strength, elongation at break (EAB), water vapor permeability (WVP), biodegradability, antioxidant and antimicrobial activity. However, the moisture content and water solubility decreased. The scanning electron microscopy (SEM) images depicted the rough surface of curcumin incorporated smart films which represents successful application of curcumin, while cracks and pits were observed for the films with the higher concentration of quercetin dihydrate. All the smart films showed effective responses against pH ranging from 2 to 14.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of cellulose-based smart films extracted from coconut waste\",\"authors\":\"Aqsa Abid, Muhammad Talha, Abid Aslam Maan, Muhammad Kashif Iqbal Khan, Muhammad Asif, Irrum Babu\",\"doi\":\"10.1111/jfs.13146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing demands for safe and quality packaged food have diverted all the intentions toward the enhancement of hazard detection and quantification techniques. The integration of smart functions with the novel biomaterials-based packaging provides an effective approach to deal with the uplifting concerns of food safety and environmental pollution. In the current study, firstly the cellulose was extracted from coconut waste, then it was subjected to prepare biodegradable films and lastly the films were incorporated with curcumin or quercetin dihydrate. The films were characterized for their mechanical, barrier and smart properties. The incorporation of curcumin or quercetin dihydrate improved the physicochemical properties of the cellulose films, including strength, elongation at break (EAB), water vapor permeability (WVP), biodegradability, antioxidant and antimicrobial activity. However, the moisture content and water solubility decreased. The scanning electron microscopy (SEM) images depicted the rough surface of curcumin incorporated smart films which represents successful application of curcumin, while cracks and pits were observed for the films with the higher concentration of quercetin dihydrate. All the smart films showed effective responses against pH ranging from 2 to 14.</p>\",\"PeriodicalId\":15814,\"journal\":{\"name\":\"Journal of Food Safety\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13146\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13146","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development and characterization of cellulose-based smart films extracted from coconut waste
The increasing demands for safe and quality packaged food have diverted all the intentions toward the enhancement of hazard detection and quantification techniques. The integration of smart functions with the novel biomaterials-based packaging provides an effective approach to deal with the uplifting concerns of food safety and environmental pollution. In the current study, firstly the cellulose was extracted from coconut waste, then it was subjected to prepare biodegradable films and lastly the films were incorporated with curcumin or quercetin dihydrate. The films were characterized for their mechanical, barrier and smart properties. The incorporation of curcumin or quercetin dihydrate improved the physicochemical properties of the cellulose films, including strength, elongation at break (EAB), water vapor permeability (WVP), biodegradability, antioxidant and antimicrobial activity. However, the moisture content and water solubility decreased. The scanning electron microscopy (SEM) images depicted the rough surface of curcumin incorporated smart films which represents successful application of curcumin, while cracks and pits were observed for the films with the higher concentration of quercetin dihydrate. All the smart films showed effective responses against pH ranging from 2 to 14.
期刊介绍:
The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.