迪里希勒边界控制下稳定抛物线系统 H∞ 控制的伽勒金近似法

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Bao-Zhu Guo , Zheng-Qiang Tan
{"title":"迪里希勒边界控制下稳定抛物线系统 H∞ 控制的伽勒金近似法","authors":"Bao-Zhu Guo ,&nbsp;Zheng-Qiang Tan","doi":"10.1016/j.sysconle.2024.105841","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we explore state feedback control for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> disturbance-attenuation problem in stable parabolic systems with in-domain distributed disturbances under Dirichlet boundary control. Calculating the state feedback control involves solving an operator algebraic Riccati equation, which poses challenges in finding an analytic solution. A practical approach is to seek an approximate solution via finite-dimensional approximation. Specifically, we employ the Galerkin approximation, which generates a sequence of finite-dimensional systems that approximate the original infinite-dimensional system. All corresponding finite-dimensional disturbance-attenuation problems are solvable, and it is demonstrated that the sequence of solutions to the associated finite-dimensional algebraic Riccati equations converges in norm to the solution of the infinite-dimensional operator algebraic Riccati equation. Furthermore, the state feedback controls derived from the finite-dimensional algebraic Riccati equations are proven to be <span><math><mi>γ</mi></math></span>-admissible controls for the original system.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"190 ","pages":"Article 105841"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galerkin approximation for H∞-control of the stable parabolic system under Dirichlet boundary control\",\"authors\":\"Bao-Zhu Guo ,&nbsp;Zheng-Qiang Tan\",\"doi\":\"10.1016/j.sysconle.2024.105841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we explore state feedback control for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> disturbance-attenuation problem in stable parabolic systems with in-domain distributed disturbances under Dirichlet boundary control. Calculating the state feedback control involves solving an operator algebraic Riccati equation, which poses challenges in finding an analytic solution. A practical approach is to seek an approximate solution via finite-dimensional approximation. Specifically, we employ the Galerkin approximation, which generates a sequence of finite-dimensional systems that approximate the original infinite-dimensional system. All corresponding finite-dimensional disturbance-attenuation problems are solvable, and it is demonstrated that the sequence of solutions to the associated finite-dimensional algebraic Riccati equations converges in norm to the solution of the infinite-dimensional operator algebraic Riccati equation. Furthermore, the state feedback controls derived from the finite-dimensional algebraic Riccati equations are proven to be <span><math><mi>γ</mi></math></span>-admissible controls for the original system.</p></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"190 \",\"pages\":\"Article 105841\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691124001294\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124001294","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了在 Dirichlet 边界控制下,具有域内分布式扰动的稳定抛物线系统中 H∞ 扰动衰减问题的状态反馈控制。计算状态反馈控制涉及求解算子代数里卡提方程,这给寻找解析解带来了挑战。一种实用的方法是通过有限维近似寻求近似解。具体来说,我们采用了 Galerkin 近似法,该方法可生成一系列有限维系统,从而逼近原始的无限维系统。所有相应的有限维干扰衰减问题都是可解的,并且证明相关有限维代数 Riccati 方程的解序列在规范上收敛于无限维算子代数 Riccati 方程的解。此外,由有限维代数 Riccati 方程导出的状态反馈控制被证明是原始系统的 γ 允许控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galerkin approximation for H∞-control of the stable parabolic system under Dirichlet boundary control

In this paper, we explore state feedback control for the H disturbance-attenuation problem in stable parabolic systems with in-domain distributed disturbances under Dirichlet boundary control. Calculating the state feedback control involves solving an operator algebraic Riccati equation, which poses challenges in finding an analytic solution. A practical approach is to seek an approximate solution via finite-dimensional approximation. Specifically, we employ the Galerkin approximation, which generates a sequence of finite-dimensional systems that approximate the original infinite-dimensional system. All corresponding finite-dimensional disturbance-attenuation problems are solvable, and it is demonstrated that the sequence of solutions to the associated finite-dimensional algebraic Riccati equations converges in norm to the solution of the infinite-dimensional operator algebraic Riccati equation. Furthermore, the state feedback controls derived from the finite-dimensional algebraic Riccati equations are proven to be γ-admissible controls for the original system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信