{"title":"迪里希勒边界控制下稳定抛物线系统 H∞ 控制的伽勒金近似法","authors":"Bao-Zhu Guo , Zheng-Qiang Tan","doi":"10.1016/j.sysconle.2024.105841","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we explore state feedback control for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> disturbance-attenuation problem in stable parabolic systems with in-domain distributed disturbances under Dirichlet boundary control. Calculating the state feedback control involves solving an operator algebraic Riccati equation, which poses challenges in finding an analytic solution. A practical approach is to seek an approximate solution via finite-dimensional approximation. Specifically, we employ the Galerkin approximation, which generates a sequence of finite-dimensional systems that approximate the original infinite-dimensional system. All corresponding finite-dimensional disturbance-attenuation problems are solvable, and it is demonstrated that the sequence of solutions to the associated finite-dimensional algebraic Riccati equations converges in norm to the solution of the infinite-dimensional operator algebraic Riccati equation. Furthermore, the state feedback controls derived from the finite-dimensional algebraic Riccati equations are proven to be <span><math><mi>γ</mi></math></span>-admissible controls for the original system.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"190 ","pages":"Article 105841"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galerkin approximation for H∞-control of the stable parabolic system under Dirichlet boundary control\",\"authors\":\"Bao-Zhu Guo , Zheng-Qiang Tan\",\"doi\":\"10.1016/j.sysconle.2024.105841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we explore state feedback control for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> disturbance-attenuation problem in stable parabolic systems with in-domain distributed disturbances under Dirichlet boundary control. Calculating the state feedback control involves solving an operator algebraic Riccati equation, which poses challenges in finding an analytic solution. A practical approach is to seek an approximate solution via finite-dimensional approximation. Specifically, we employ the Galerkin approximation, which generates a sequence of finite-dimensional systems that approximate the original infinite-dimensional system. All corresponding finite-dimensional disturbance-attenuation problems are solvable, and it is demonstrated that the sequence of solutions to the associated finite-dimensional algebraic Riccati equations converges in norm to the solution of the infinite-dimensional operator algebraic Riccati equation. Furthermore, the state feedback controls derived from the finite-dimensional algebraic Riccati equations are proven to be <span><math><mi>γ</mi></math></span>-admissible controls for the original system.</p></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"190 \",\"pages\":\"Article 105841\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691124001294\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124001294","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Galerkin approximation for H∞-control of the stable parabolic system under Dirichlet boundary control
In this paper, we explore state feedback control for the disturbance-attenuation problem in stable parabolic systems with in-domain distributed disturbances under Dirichlet boundary control. Calculating the state feedback control involves solving an operator algebraic Riccati equation, which poses challenges in finding an analytic solution. A practical approach is to seek an approximate solution via finite-dimensional approximation. Specifically, we employ the Galerkin approximation, which generates a sequence of finite-dimensional systems that approximate the original infinite-dimensional system. All corresponding finite-dimensional disturbance-attenuation problems are solvable, and it is demonstrated that the sequence of solutions to the associated finite-dimensional algebraic Riccati equations converges in norm to the solution of the infinite-dimensional operator algebraic Riccati equation. Furthermore, the state feedback controls derived from the finite-dimensional algebraic Riccati equations are proven to be -admissible controls for the original system.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.