探索机械通气治疗期间患者与呼吸机不同步的可变观察时间窗

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Christopher Yew Shuen Ang , Yeong Shiong Chiew , Xin Wang , Ean Hin Ooi , Mohd Basri Mat Nor , Matthew E. Cove , J. Geoffrey Chase
{"title":"探索机械通气治疗期间患者与呼吸机不同步的可变观察时间窗","authors":"Christopher Yew Shuen Ang ,&nbsp;Yeong Shiong Chiew ,&nbsp;Xin Wang ,&nbsp;Ean Hin Ooi ,&nbsp;Mohd Basri Mat Nor ,&nbsp;Matthew E. Cove ,&nbsp;J. Geoffrey Chase","doi":"10.1016/j.ifacsc.2024.100266","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><p>Patient–ventilator asynchrony (PVA) is prevalent in mechanical ventilation (MV) for critically ill patients and has been associated with adverse patient outcomes. However, studies investigating the associations between PVA and patient outcomes employ differing time windows for PVA evaluation. In this study, machine learning methods are used to quantify the prevalence and magnitude of asynchrony at different time windows, as well as its temporal trends. The study aims to identify the optimal time window for assessing the temporal changes in the asynchrony index (AI) and magnitude of asynchrony (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>).</p></div><div><h3>Methods:</h3><p>This study uses Convolutional Neural Networks (CNN) and Convolutional Autoencoders (CAE) to detect incidences of PVA and quantify its severity in 30 MV respiratory failure patients with 2722 h of respiratory data. The frequency of PVA and the breath-average magnitude were determined over different time periods, <em>t</em>, where <span><math><mrow><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 45, 60 min and throughout MV. The AI for the patients was determined using the CNN model. Given an asynchronous breath, the CAEs were used to reconstruct asynchrony-free waveforms. The <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> was quantified as the difference between the two waveforms. The change in AI (<span><math><mi>Δ</mi></math></span>AI) and the change in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>\n(<span><math><mrow><mi>Δ</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow></math></span>) for all time windows, <em>t</em> were also calculated for each patient.</p></div><div><h3>Results:</h3><p>The median [interquartile range] overall AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> for the patient cohort are 24.8 [12.9–46.1]% and 37.2 [33.4–45.3]% respectively. Analysis of the patient cohort also shows significant intra-patient variability in AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>, while the inter-patient variation in AI is greater as compared to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>. The cohort mean <span><math><mi>Δ</mi></math></span>AI and <span><math><mrow><mi>Δ</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow></math></span> exhibit a converging trend with a minima at <span><math><mrow><mi>t</mi><mo>=</mo><mn>5</mn></mrow></math></span> min and with values of 5.32 ± 2.37% and 2.80 ± 1.03%, respectively. A time window of <span><math><mrow><mi>t</mi><mo>=</mo><mn>5</mn></mrow></math></span> min was preferred for AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> evaluation as it can capture the granular changes in asynchrony while also being representative of longer temporal trends, thus preventing excessive variations in patient AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>.</p></div><div><h3>Conclusion:</h3><p>Overall, this study provides new insight into both the short- and long-term trends of PVA in MV patients. By understanding these patterns, healthcare providers can enhance the monitoring of MV, leading to more informed and timely intervention. Ultimately, this could lead to improved patient care and outcomes.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"29 ","pages":"Article 100266"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601824000270/pdfft?md5=094888b14f6d15c2cd2308a4be54717c&pid=1-s2.0-S2468601824000270-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring variable observational time windows for patient–ventilator​ asynchrony during mechanical ventilation treatment\",\"authors\":\"Christopher Yew Shuen Ang ,&nbsp;Yeong Shiong Chiew ,&nbsp;Xin Wang ,&nbsp;Ean Hin Ooi ,&nbsp;Mohd Basri Mat Nor ,&nbsp;Matthew E. Cove ,&nbsp;J. Geoffrey Chase\",\"doi\":\"10.1016/j.ifacsc.2024.100266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><p>Patient–ventilator asynchrony (PVA) is prevalent in mechanical ventilation (MV) for critically ill patients and has been associated with adverse patient outcomes. However, studies investigating the associations between PVA and patient outcomes employ differing time windows for PVA evaluation. In this study, machine learning methods are used to quantify the prevalence and magnitude of asynchrony at different time windows, as well as its temporal trends. The study aims to identify the optimal time window for assessing the temporal changes in the asynchrony index (AI) and magnitude of asynchrony (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>).</p></div><div><h3>Methods:</h3><p>This study uses Convolutional Neural Networks (CNN) and Convolutional Autoencoders (CAE) to detect incidences of PVA and quantify its severity in 30 MV respiratory failure patients with 2722 h of respiratory data. The frequency of PVA and the breath-average magnitude were determined over different time periods, <em>t</em>, where <span><math><mrow><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 45, 60 min and throughout MV. The AI for the patients was determined using the CNN model. Given an asynchronous breath, the CAEs were used to reconstruct asynchrony-free waveforms. The <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> was quantified as the difference between the two waveforms. The change in AI (<span><math><mi>Δ</mi></math></span>AI) and the change in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>\\n(<span><math><mrow><mi>Δ</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow></math></span>) for all time windows, <em>t</em> were also calculated for each patient.</p></div><div><h3>Results:</h3><p>The median [interquartile range] overall AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> for the patient cohort are 24.8 [12.9–46.1]% and 37.2 [33.4–45.3]% respectively. Analysis of the patient cohort also shows significant intra-patient variability in AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>, while the inter-patient variation in AI is greater as compared to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>. The cohort mean <span><math><mi>Δ</mi></math></span>AI and <span><math><mrow><mi>Δ</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow></math></span> exhibit a converging trend with a minima at <span><math><mrow><mi>t</mi><mo>=</mo><mn>5</mn></mrow></math></span> min and with values of 5.32 ± 2.37% and 2.80 ± 1.03%, respectively. A time window of <span><math><mrow><mi>t</mi><mo>=</mo><mn>5</mn></mrow></math></span> min was preferred for AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span> evaluation as it can capture the granular changes in asynchrony while also being representative of longer temporal trends, thus preventing excessive variations in patient AI and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>s</mi><mi>y</mi><mi>n</mi><mo>,</mo><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></math></span>.</p></div><div><h3>Conclusion:</h3><p>Overall, this study provides new insight into both the short- and long-term trends of PVA in MV patients. By understanding these patterns, healthcare providers can enhance the monitoring of MV, leading to more informed and timely intervention. Ultimately, this could lead to improved patient care and outcomes.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"29 \",\"pages\":\"Article 100266\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000270/pdfft?md5=094888b14f6d15c2cd2308a4be54717c&pid=1-s2.0-S2468601824000270-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:重症患者机械通气(MV)中普遍存在患者-呼吸机不同步(PVA)现象,并与患者的不良预后有关。然而,调查 PVA 与患者预后之间关系的研究采用了不同的 PVA 评估时间窗。本研究采用机器学习方法来量化不同时间窗的不同步发生率和程度及其时间趋势。方法:本研究使用卷积神经网络(CNN)和卷积自动编码器(CAE)检测 30 名中风呼吸衰竭患者 2722 小时呼吸数据中的 PVA 发生率并量化其严重程度。在不同的时间段 t(t=0.5、1、2、3、4、5、10、15、20、25、30、45、60 分钟和整个中压期间)内确定了 PVA 的频率和呼吸平均幅度。患者的人工指数是通过 CNN 模型确定的。对于不同步呼吸,CAEs 被用来重建无不同步波形。Masyn,avg 被量化为两个波形之间的差值。结果:患者群的总 AI 和 Masyn,avg 的中位数[四分位间范围]分别为 24.8 [12.9-46.1] % 和 37.2 [33.4-45.3]%。对患者队列的分析还显示,AI 和 Masyn,avg 在患者内部存在显著差异,而与 Masyn,avg 相比,AI 在患者之间的差异更大。 患者队列的平均 ΔAI 和 ΔMasyn,avg 呈收敛趋势,在 t=5 分钟时达到最小值,分别为 5.32 ± 2.37% 和 2.80 ± 1.03%。对 AI 和 Masyn,avg 的评估首选 t=5 分钟的时间窗,因为它既能捕捉到不同步的细微变化,又能代表更长的时间趋势,从而防止患者 AI 和 Masyn,avg 的过度变化。通过了解这些模式,医疗服务提供者可以加强对心肌梗死的监测,从而采取更明智、更及时的干预措施。最终,这将改善患者护理和治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring variable observational time windows for patient–ventilator​ asynchrony during mechanical ventilation treatment

Background and Objective:

Patient–ventilator asynchrony (PVA) is prevalent in mechanical ventilation (MV) for critically ill patients and has been associated with adverse patient outcomes. However, studies investigating the associations between PVA and patient outcomes employ differing time windows for PVA evaluation. In this study, machine learning methods are used to quantify the prevalence and magnitude of asynchrony at different time windows, as well as its temporal trends. The study aims to identify the optimal time window for assessing the temporal changes in the asynchrony index (AI) and magnitude of asynchrony (Masyn,avg).

Methods:

This study uses Convolutional Neural Networks (CNN) and Convolutional Autoencoders (CAE) to detect incidences of PVA and quantify its severity in 30 MV respiratory failure patients with 2722 h of respiratory data. The frequency of PVA and the breath-average magnitude were determined over different time periods, t, where t=0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 45, 60 min and throughout MV. The AI for the patients was determined using the CNN model. Given an asynchronous breath, the CAEs were used to reconstruct asynchrony-free waveforms. The Masyn,avg was quantified as the difference between the two waveforms. The change in AI (ΔAI) and the change in Masyn,avg (ΔMasyn,avg) for all time windows, t were also calculated for each patient.

Results:

The median [interquartile range] overall AI and Masyn,avg for the patient cohort are 24.8 [12.9–46.1]% and 37.2 [33.4–45.3]% respectively. Analysis of the patient cohort also shows significant intra-patient variability in AI and Masyn,avg, while the inter-patient variation in AI is greater as compared to Masyn,avg. The cohort mean ΔAI and ΔMasyn,avg exhibit a converging trend with a minima at t=5 min and with values of 5.32 ± 2.37% and 2.80 ± 1.03%, respectively. A time window of t=5 min was preferred for AI and Masyn,avg evaluation as it can capture the granular changes in asynchrony while also being representative of longer temporal trends, thus preventing excessive variations in patient AI and Masyn,avg.

Conclusion:

Overall, this study provides new insight into both the short- and long-term trends of PVA in MV patients. By understanding these patterns, healthcare providers can enhance the monitoring of MV, leading to more informed and timely intervention. Ultimately, this could lead to improved patient care and outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信